Author:
Yang Changqing,Hu Renlin,Xiong Shilan,Hong Zhou,Liu Jiaqi,Mao Zhuqing,Chen Mingzhu
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Suzuki H, Kanamaru H, Kawakita F, Asada R, Fujimoto M, Shiba M. Cerebrovascular pathophysiology of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Histol Histopathol. 2021;36(2):143–58.
2. Zhang H, Yang G, Dong A. Prediction Model between Serum Vitamin D and Neurological Deficit in Cerebral Infarction Patients Based on Machine Learning. Computational and mathematical methods in medicine. 2022;2022:2914484.
3. Li X, Wang Y, Xu J. Development of a machine learning-based risk prediction model for cerebral infarction and comparison with nomogram model. J Affect Disord. 2022;314:341–8.
4. Nishi H, Oishi N, Ogawa H, Natsue K, Doi K, Kawakami O, et al. Predicting cerebral infarction in patients with atrial fibrillation using machine learning: the Fushimi AF registry. J Cereb Blood flow Metabolism: Official J Int Soc Cereb Blood Flow Metabolism. 2022;42(5):746–56.
5. Zhang X, Hu Y, Hong M, Guo T, Wei W, Song S. Plasma thrombomodulin, fibrinogen, and activity of tissue factor as risk factors for acute cerebral infarction. Am J Clin Pathol. 2007;128(2):287–92.