Mental workload classification using convolutional neural networks based on fNIRS-derived prefrontal activity

Author:

Park Jin-Hyuck

Abstract

Abstract Background Functional near-infrared spectroscopy (fNIRS) is a tool to assess brain activity during cognitive testing. Despite its usefulness, its feasibility in assessing mental workload remains unclear. This study was to investigate the potential use of convolutional neural networks (CNNs) based on functional near-infrared spectroscopy (fNIRS)-derived signals to classify mental workload in individuals with mild cognitive impairment. Methods Spatial images by constructing a statistical activation map from the prefrontal activity of 120 subjects with MCI performing three difficulty levels of the N-back task (0, 1, and 2-back) were used for CNNs. The CNNs were evaluated using a 5 and 10-fold cross-validation method. Results As the difficulty level of the N-back task increased, the accuracy decreased and prefrontal activity increased. In addition, there was a significant difference in the accuracy and prefrontal activity across the three levels (p’s < 0.05). The accuracy of the CNNs based on fNIRS-derived spatial images evaluated by 5 and 10-fold cross-validation in classifying the difficulty levels ranged from 0.83 to 0.96. Conclusion fNIRS could also be a promising tool for measuring mental workload in older adults with MCI despite their cognitive decline. In addition, this study demonstrated the feasibility of the classification performance of the CNNs based on fNIRS-derived signals from the prefrontal cortex.

Funder

Soonchunhyang University

National Research Foundation of Korea

Ministry of Education and National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mental Workload Classification from fNIRS Signals by Leveraging Machine Learning;2023 IEEE Signal Processing in Medicine and Biology Symposium (SPMB);2023-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3