Sex-dependent circadian alterations of both central and peripheral clock genes expression and gut–microbiota composition during activity-based anorexia in mice

Author:

Salaün Colin,Courvalet Marine,Rousseau Léna,Cailleux Kévin,Breton Jonathan,Bôle-Feysot Christine,Guérin Charlène,Huré Marion,Goichon Alexis,do Rego Jean-Claude,Déchelotte Pierre,Ribet David,Achamrah Najate,Coëffier MoïseORCID

Abstract

Abstract Rationale Patients with anorexia nervosa (AN) often present sleep disorders and circadian hormonal dysregulation. The role of the microbiota–gut–brain axis in the regulation of feeding behavior has emerged during the last decades but its relationships with the circadian rhythm remains poorly documented. Thus, we aimed to characterize the circadian clock genes expression in peripheral and central tissues in the activity-based anorexia mouse model (ABA), as well as the dynamics of the gut–microbiota composition. Methods From day 1 to day 17, male and female C57Bl/6 mice were submitted or not to the ABA protocol (ABA and control (CT) groups), which combines a progressive limited access to food and a free access to a running wheel. At day 17, fasted CT and ABA mice were euthanized after either resting (EoR) or activity (EoA) phase (n = 10–12 per group). Circadian clock genes expression was assessed by RT-qPCR on peripheral (liver, colon and ileum) and central (hypothalamic suprachiasmatic nucleus or SCN) tissues. Cecal bacterial taxa abundances were evaluated by qPCR. Data were compared by two-way ANOVA followed by post-tests. Results ABA mice exhibited a lower food intake, a body weight loss and an increase of diurnal physical activity that differ according with the sex. Interestingly, in the SCN, only ABA female mice exhibited altered circadian clock genes expression (Bmal1, Per1, Per2, Cry1, Cry2). In the intestinal tract, modification of clock genes expression was also more marked in females compared to males. For instance, in the ileum, female mice showed alteration of Bmal1, Clock, Per1, Per2, Cry1, Cry2 and Rev-erbα mRNA levels, while only Per2 and Cry1 mRNAs were affected by ABA model in males. By contrast, in the liver, clock genes expression was more markedly affected in males compared to females in response to ABA. Finally, circadian variations of gut–bacteria abundances were observed in both male and female mice and sex-dependent alteration were observed in response to the ABA model. Conclusions This study shows that alteration of circadian clock genes expression at both peripheral and central levels occurs in response to the ABA model. In addition, our data underline that circadian variations of the gut–microbiota composition are sex-dependent.

Funder

Charles Nicolle Foundation

Microbiome Foundation

Roquette Foundation for Health

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Gender Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3