A novel pH- and glutathione-responsive drug delivery system based on in situ growth of MOF199 on mesoporous organic silica nanoparticles targeting the hepatocellular carcinoma niche

Author:

Ling Jiaji,Jiang Yongmei,Yan Shaoying,Dang Hao,Yue Huan,Liu Kanglin,Kuang Linghan,Liu Xingxin,Tang Hua

Abstract

Abstract Background For people with advanced hepatocellular carcinoma (HCC), systemic chemotherapy remains the only choice of palliative treatment. However, chemotherapy efficacy is not effective due to its short blood circulation times, nonspecific cell and tissue biodistribution, and rapid metabolism or excretion from the body. Therefore, a targeted nanomedicine delivery system is urgently needed. Methods In order to improve the treatment efficiency of HCC, based on in situ growth of a copper metal organic framework on mesoporous organic silica nanoparticles, dual pH- and glutathione (GSH)-responsive multifunctional nanocomposites were synthesized as nanocarriers for enhanced HCC therapy. In this research, cellular uptake studies were performed using CLSM and Bio-TEM observations. Flow cytometry, AO-EB fluorescent staining, EdU test and Western blot were utilized to explore the apoptosis and proliferation process. In vivo imaging was employed to research the distribution of the nanocomposites in HCC tumor-bearing nude mice and the xenograft model of HCC tumor-bearing nude mice was applied to investigate the anti-tumor effects of drug-loaded nanocomposites in vivo. Results This newly constructed degradable nanocomposite DOX/SOR@SP94 and mPEG-anchored MONs@MOF199 (D/S@SPMM) has the benefits of controllable pore size, high encapsulation efficiency, and precise targeting. According to the results of in vivo imaging and anti-tumor studies, as well as pharmacokinetic research, D/S@SPMM possessed precise HCC tumor targeting and long-lasting accumulation properties at the tumor region. Compared with traditional chemotherapy and non-targeted drug delivery systems, anti-tumor efficiency was increased by approximately 10- and 5-fold, respectively. The nanocomposites exhibited excellent anti-tumor properties without inducing observable systemic toxicity, owing to efficient DOX and SOR loading and release as well as the HCC specific targeting peptide SP94. Conclusions The in vitro and in vivo anti-tumor results indicated that these nanocomposites could be an efficient nanomedicine for targeting HCC therapy.

Funder

the Key R&D project of Science & technology Department of Sichuan Province

the Province Natural Science Foundation of Jiangxi Province

Science and Technology Bureau of Chengdu

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3