Novel nanotherapeutics for cancer immunotherapy by albumin nanoparticles functionalized with PD-1 and PD-L1 aptamers

Author:

Jiang Qiping,Yao Fengjiao,An Yacong,Lai Xialian,Li Xundou,Yu Zhen,Yang Xian-Da

Abstract

Abstract Background PD-1/PD-L1 blockade plays a crucial role in cancer immunotherapy. Exploration of new technologies to further enhance the efficacy of PD-1/PD-L1 blockade is therefore of potential medical importance. Nanotherapeutics can accumulate in tumor tissues due to enhanced permeability and retention (EPR) effects. In this study, a novel nanotherapeutic for cancer immunotherapy was implemented with albumin nanoparticles functionalized by both PD-1 and PD-L1 aptamers. Results Albumin nanoparticles (NP) were functionalized with either PD-1 aptamers (PD1-NP), PD-L1 aptamers (PDL1-NP), or both types of aptamers (PD1-NP-PDL1). Average sizes of PD1-NP, PDL1-NP, and PD1-NP-PDL1 were 141.8 nm, 141.8 nm, and 164.2 nm, respectively. PD1-NP had good affinity for activated T cells that expresses PD-1. Similarly, PDL1-NP could bind with MDA-MB-231 or CT26 tumor cells that express PD-L1. Moreover, the bispecific PD1-NP-PDL1 could bind with both the activated T cells and the PD-L1-expressing tumor cells, and tether the two type of cells together. Functionally, aptamer-modified nanoparticles exhibited stronger immune-stimulating effects vs. free aptamers. Specifically, PD1-NP or PDL1-NP induced stronger lymphocyte-mediated cytotoxicity against PD-L1-expressing tumor cells in vitro vs. free PD-1 or PD-L1 aptamers. Animal studies also showed that PD1-NP or PDL1-NP significantly improved antitumor efficacy against CT26 colon cancer in vivo vs. free PD-1 or PD-L1 aptamers. Importantly, the bispecific PD1-NP-PDL1 further boosted the in vivo antitumor efficacy compared with PD1-NP or PDL1-NP, without raising systemic toxicity. Conclusion The results suggest that the bispecific PD1-NP-PDL1 is a promising nanotherapeutic to improve the efficacy of PD-1/PD-L1 blockade, and may have application potential in colon cancer treatment.

Funder

the Ministry of Science and Technology

Tianjin Science and Technology Plan Project

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3