Preparation and characterization of cetuximab-loaded egg serum albumin nanoparticles and their uses as a drug delivery system against Caco-2 colon cancer cells

Author:

Salim Elsayed I.,Mosbah Abeer M.,Elhussiny F. A.,Hanafy Nemany A. N.,Abdou Y.

Abstract

AbstractTo avoid the harmful side effects of cetuximab and improve its therapeutic efficacy, egg serum albumin (ESA) was used as a targeting drug carrier moiety for cancer therapy against Caco-2 colon cancer cells. The simple improved desolvation method was used to synthesize ESA nanoparticles (ESA-NPs) and cetuximab-loaded albumin nanoparticles (CET-ANPs) with glutaraldehyde as a crosslinking agent. The ESA-NPs and CET-ANPs were spherically shaped, and their sizes and surface potentials were 100 and − 24 nm and 170 and − 20 nm, respectively, as determined using transmission electron microscopy (TEM) and a Zeta potential analyzer. The specific functional groups of the prepared nanoparticles were revealed by FTIR analysis. In the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay, CET-ANPs exerted the highest antitumor activity after 24 h followed by CET, ESA-NPs, and pure ESA. Combination of CET + ESA-NPs at different IC50 concentrations at ratios of 1:1, 1:2, 2:1, 1:4, 4:1, 1:9, or 9:1 showed significant synergistic effects with a combination index (CI) > 1. Furthermore, the CET either loaded with ESA-NPs or administered in combination (CET + ESA NPs) caused significant apoptotic damage, as well as an S-phase or G2/M cell cycle arrest to the cancer cells, respectively. These were directly linked with a significant upregulation of mRNA expression of Caspase3 and Bax genes and an extreme downregulation of the mRNA expression of Bcl2, particularly in the combination treatment group, as compared to the untreated cells. Finally, ESA-NPs improved the effectiveness of cetuximab, strongly caused apoptotic and antiproliferative action with lower systemic toxicity, and could be suggested for the targeted administration of anticancer medications in various nanosystems.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3