Ultrasmall Fe3O4 and Gd2O3 hybrid nanoparticles for T1-weighted MR imaging of cancer

Author:

Sarikhani Abolfazl,Alamzadeh Zahra,Beik Jaber,Irajirad Rasoul,Mirrahimi Mehri,Pirhajati Mahabadi Vahid,Kamrava S. Kamran,Ghaznavi Habib,Khoei Samideh

Abstract

AbstractGadolinium-based contrast agents (GdCAs) have been the most frequently used T1-weighted magnetic resonance imaging (MRI) contrast agents for decades. However, they have serious disadvantages such as low longitudinal relaxivity value (r1) and high dose associated-nephrotoxicity that restrict their wide applications. These emphasize the need for an ideal stable and biocompatible T1-weighted CA with high contrast enhancement performance. Here, we propose a wet-chemical synthesis technique to form a nanocomposite consisting of ultrasmall iron oxide nanoparticles (US-IO) and Gd2O3 hybrid nanoparticles stabilized with dextran (FG-HNPs) for T1-weighted MR imaging. Relaxometry study showed that FG-HNPs have a high r1 value (42.28 mM−1S−1) and low relaxivity ratio (r2/r1: 1.416) at 3.0T. In vivo MRI contrast enhancement factor (ΔSNR) for FG-HNPs (257.025 ± 17.4%) was found to be 1.99-fold higher than US-IO (129.102 ± 15%) and 3.35-fold higher than Dotarem (76.71 ± 14.2%) as routinely used T1-weighted CA. The cytotoxicity assay and histological examination confirmed the biocompatibility of FG-HNPs. The biodistribution study, transmission electron microscopy (TEM) and Prussian blue (PB) staining of tumor tissue proved the effective tumor localization of FG-HNPs. Therefore, FG-HNPs can be suggested as a promising CA for T1-weighted MRI of tumors by virtue of their remarkable relaxivities and high biocompatibility.

Funder

Zahedan University of Medical Sciences

Iran University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Pharmaceutical Science,Oncology,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3