A robot-based interception task to quantify upper limb impairments in proprioceptive and visual feedback after stroke

Author:

Park Kayne,Ritsma Benjamin R.,Dukelow Sean P.,Scott Stephen H.

Abstract

Abstract Background A key motor skill is the ability to rapidly interact with our dynamic environment. Humans can generate goal-directed motor actions in response to sensory stimulus within ~ 60-200ms. This ability can be impaired after stroke, but most clinical tools lack any measures of rapid feedback processing. Reaching tasks have been used as a framework to quantify impairments in generating motor corrections for individuals with stroke. However, reaching may be inadequate as an assessment tool as repeated reaching can be fatiguing for individuals with stroke. Further, reaching requires many trials to be completed including trials with and without disturbances, and thus, exacerbate fatigue. Here, we describe a novel robotic task to quantify rapid feedback processing in healthy controls and compare this performance with individuals with stroke to (more) efficiently identify impairments in rapid feedback processing. Methods We assessed a cohort of healthy controls (n = 135) and individuals with stroke (n = 40; Mean 41 days from stroke) in the Fast Feedback Interception Task (FFIT) using the Kinarm Exoskeleton robot. Participants were instructed to intercept a circular white target moving towards them with their hand represented as a virtual paddle. On some trials, the arm could be physically perturbed, the target or paddle could abruptly change location, or the target could change colour requiring the individual to now avoid the target. Results Most participants with stroke were impaired in reaction time (85%) and end-point accuracy (83%) in at least one of the task conditions, most commonly with target or paddle shifts. Of note, this impairment was also evident in most individuals with stroke when performing the task using their unaffected arm (75%). Comparison with upper limb clinical measures identified moderate correlations with the FFIT. Conclusion The FFIT was able to identify a high proportion of individuals with stroke as impaired in rapid feedback processing using either the affected or unaffected arms. The task allows many different types of feedback responses to be efficiently assessed in a short amount of time.

Funder

Ontario Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3