An electrical stimulation intervention protocol to prevent disuse atrophy and muscle strength decline: an experimental study in rat

Author:

Shi Haiwang,Li Fan,Zhang Fulong,Wei Xiaobei,Liu Chengyi,Duan Rui

Abstract

Abstract Background Skeletal muscle is negatively impacted by conditions such as spaceflight or prolonged bed rest, resulting in a dramatic decline in muscle mass, maximum contractile force, and muscular endurance. Electrical stimulation (ES) is an essential tool in neurophysiotherapy and an effective means of preventing skeletal muscle atrophy and dysfunction. Historically, ES treatment protocols have used either low or high frequency electrical stimulation (LFES/HFES). However, our study tests the use of a combination of different frequencies in a single electrical stimulation intervention in order to determine a more effective protocol for improving both skeletal muscle strength and endurance. Methods An adult male SD rat model of muscle atrophy was established through 4 weeks of tail suspension (TS). To investigate the effects of different frequency combinations, the experimental animals were treated with low (20 Hz) or high (100 Hz) frequency before TS for 6 weeks, and during TS for 4weeks. The maximum contraction force and fatigue resistance of skeletal muscle were then assessed before the animals were sacrificed. The muscle mass, fiber cross-sectional area (CSA), fiber type and related protein expression were examined and analyzed to gain insights into the mechanisms by which the ES intervention protocol used in this study regulates muscle strength and endurance. Results After 4 weeks of unloading, the soleus muscle mass and fiber CSA decreased by 39% and 58% respectively, while the number of glycolytic muscle fibers increased by 21%. The gastrocnemius muscle fibers showed a 51% decrease in CSA, with a 44% decrease in single contractility and a 39% decrease in fatigue resistance. The number of glycolytic muscle fibers in the gastrocnemius also increased by 29%. However, the application of HFES either prior to or during unloading showed an improvement in muscle mass, fiber CSA, and oxidative muscle fibers. In the pre-unloading group, the soleus muscle mass increased by 62%, while the number of oxidative muscle fibers increased by 18%. In the during unloading group, the soleus muscle mass increased by 29% and the number of oxidative muscle fibers increased by 15%. In the gastrocnemius, the pre-unloading group showed a 38% increase in single contractile force and a 19% increase in fatigue resistance, while in the during unloading group, a 21% increase in single contractile force and a 29% increase in fatigue resistance was observed, along with a 37% and 26% increase in the number of oxidative muscle fibers, respectively. The combination of HFES before unloading and LFES during unloading resulted in a significant elevation of the soleus mass by 49% and CSA by 90%, with a 40% increase in the number of oxidative muscle fibers in the gastrocnemius. This combination also resulted in a 66% increase in single contractility and a 38% increase in fatigue resistance. Conclusion Our results indicated that using HFES before unloading can reduce the harmful effects of muscle unloading on the soleus and gastrocnemius muscles. Furthermore, we found that combining HFES before unloading with LFES during unloading was more effective in preventing muscle atrophy in the soleus and preserving the contractile function of the gastrocnemius muscle.

Funder

National Natural Science Foundation of China

Guangzhou Scientific Research Grant

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3