GEARing smart environments for pediatric motor rehabilitation

Author:

Kokkoni ElenaORCID,Mavroudi Effrosyni,Zehfroosh Ashkan,Galloway James C.,Vidal Renè,Heinz Jeffrey,Tanner Herbert G.

Abstract

Abstract Background There is a lack of early (infant) mobility rehabilitation approaches that incorporate natural and complex environments and have the potential to concurrently advance motor, cognitive, and social development. The Grounded Early Adaptive Rehabilitation (GEAR) system is a pediatric learning environment designed to provide motor interventions that are grounded in social theory and can be applied in early life. Within a perceptively complex and behaviorally natural setting, GEAR utilizes novel body-weight support technology and socially-assistive robots to both ease and encourage mobility in young children through play-based, child-robot interaction. This methodology article reports on the development and integration of the different system components and presents preliminary evidence on the feasibility of the system. Methods GEAR consists of the physical and cyber components. The physical component includes the playground equipment to enrich the environment, an open-area body weight support (BWS) device to assist children by partially counter-acting gravity, two mobile robots to engage children into motor activity through social interaction, and a synchronized camera network to monitor the sessions. The cyber component consists of the interface to collect human movement and video data, the algorithms to identify the children’s actions from the video stream, and the behavioral models for the child-robot interaction that suggest the most appropriate robot action in support of given motor training goals for the child. The feasibility of both components was assessed via preliminary testing. Three very young children (with and without Down syndrome) used the system in eight sessions within a 4-week period. Results All subjects completed the 8-session protocol, participated in all tasks involving the selected objects of the enriched environment, used the BWS device and interacted with the robots in all eight sessions. Action classification algorithms to identify early child behaviors in a complex naturalistic setting were tested and validated using the video data. Decision making algorithms specific to the type of interactions seen in the GEAR system were developed to be used for robot automation. Conclusions Preliminary results from this study support the feasibility of both the physical and cyber components of the GEAR system and demonstrate its potential for use in future studies to assess the effects on the co-development of the motor, cognitive, and social systems of very young children with mobility challenges.

Funder

National Institute of Child Health and Human Development

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3