Author:
Zhang Liping,Jia Gongwei,Ma Jingxi,Wang Sanrong,Cheng Li
Abstract
Abstract
Objective
To investigate the effect of robot-assisted therapy (RAT) on upper limb motor control and activity function in poststroke patients compared with that of non-robotic therapy.
Methods
We searched PubMed, EMBASE, Cochrane Library, Google Scholar and Scopus. Randomized controlled trials published from 2010 to nowadays comparing the effect of RAT and control treatment on upper limb function of poststroke patients aged 18 or older were included. Researchers extracted all relevant data from the included studies, assessed the heterogeneity with inconsistency statistics (I2 statistics), evaluated the risk of bias of individual studies and performed data analysis.
Result
Forty-six studies were included. Meta-analysis showed that the outcome of the Fugl-Meyer Upper Extremity assessment (FM-UE) (SMD = 0.20, P = 0.001) and activity function post intervention was significantly higher (SMD = 0.32, P < 0.001) in the RAT group than in the control group. Differences in outcomes of the FM-UE and activity function between the RAT group and control group were observed at the end of treatment and were not found at the follow-up. Additionally, the outcomes of the FM-UE (SMD = 0.15, P = 0.005) and activity function (SMD = 0.32, P = 0.002) were significantly different between the RAT and control groups only with a total training time of more than 15 h. Moreover, the differences in outcomes of FM-UE and activity post intervention were not significant when the arm robots were applied to patients with severe impairments (FM-UE: SMD = 0.14, P = 0.08; activity: SMD = 0.21, P = 0.06) or when patients were provided with patient-passive training (FM-UE: SMD = − 0.09, P = 0.85; activity: SMD = 0.70, P = 0.16).
Conclusion
RAT has the significant immediate benefits for motor control and activity function of hemiparetic upper limb in patients after stroke compared with controls, but there is no evidence to support its long-term additional benefits. The superiority of RAT in improving motor control and activity function is limited by the amount of training time and the patients' active participation.
Funder
the Medical Scientific Research Projects Foundation of Chongqing
the Natural Science Foundation Project of Chongqing
National Natural Science Foundation of China
Natural Science Foundation of Chongqing
Chongqing medical scientific research project
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Rehabilitation
Reference54 articles.
1. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet (London, England). 2014;383(9913):245–54.
2. Ding Q, Liu S, Yao Y, Liu H, Cai T, Han L. Global, Regional, and National Burden of Ischemic Stroke, 1990–2019. Neurology. 2021.
3. Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014;2014(11): Cd110820.
4. Maritz R, Aronsky D, Prodinger B. The International Classification of Functioning, Disability and Health (ICF) in electronic health records. A systematic literature review. Appl Clin Inform. 2017;8(3):964–80.
5. Harris JE, Eng JJ. Paretic upper-limb strength best explains arm activity in people with stroke. Phys Ther. 2007;87(1):88–97.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献