Electrical stimulation to promote osseointegration of bone anchoring implants: a topical review

Author:

Pettersen Emily,Anderson Jenna,Ortiz-Catalan MaxORCID

Abstract

AbstractElectrical stimulation has shown to be a promising approach for promoting osseointegration in bone anchoring implants, where osseointegration defines the biological bonding between the implant surface and bone tissue. Bone-anchored implants are used in the rehabilitation of hearing and limb loss, and extensively in edentulous patients. Inadequate osseointegration is one of the major factors of implant failure that could be prevented by accelerating or enhancing the osseointegration process by artificial means. In this article, we reviewed the efforts to enhance the biofunctionality at the bone-implant interface with electrical stimulation using the implant as an electrode. We reviewed articles describing different electrode configurations, power sources, and waveform-dependent stimulation parameters tested in various in vitro and in vivo models. In total 55 English-language and peer-reviewed publications were identified until April 2020 using PubMed, Google Scholar, and the Chalmers University of Technology Library discovery system using the keywords: osseointegration, electrical stimulation, direct current and titanium implant. Thirteen of those publications were within the scope of this review. We reviewed and compared studies from the last 45 years and found nonuniform protocols with disparities in cell type and animal model, implant location, experimental timeline, implant material, evaluation assays, and type of electrical stimulation. The reporting of stimulation parameters was also found to be inconsistent and incomplete throughout the literature. Studies using in vitro models showed that osteoblasts were sensitive to the magnitude of the electric field and duration of exposure, and such variables similarly affected bone quantity around implants in in vivo investigations. Most studies showed benefits of electrical stimulation in the underlying processes leading to osseointegration, and therefore we found the idea of promoting osseointegration by using electric fields to be supported by the available evidence. However, such an effect has not been demonstrated conclusively nor optimally in humans. We found that optimal stimulation parameters have not been thoroughly investigated and this remains an important step towards the clinical translation of this concept. In addition, there is a need for reporting standards to enable meta-analysis for evidence-based treatments.

Funder

Stiftelsen Promobilia

IngaBritt och Arne Lundbergs Forskningsstiftelse

Vetenskapsrådet

VINNOVA

European Commission

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3