Design and analysis of LacI-repressed promoters and DNA-looping in a cyanobacterium

Author:

Camsund Daniel,Heidorn Thorsten,Lindblad Peter

Abstract

Abstract Background Cyanobacteria are solar-powered prokaryotes useful for sustainable production of valuable molecules, but orthogonal and regulated promoters are lacking. The Lac repressor (LacI) from Escherichia coli is a well-studied transcription factor that is orthogonal to cyanobacteria and represses transcription by binding a primary lac operator (lacO), blocking RNA-polymerase. Repression can be enhanced through DNA-looping, when a LacI-tetramer binds two spatially separated lacO and loops the DNA. Ptrc is a commonly used LacI-repressed promoter that is inefficiently repressed in the cyanobacterium Synechocystis PCC 6803. Ptrc 2O, a version of Ptrc with two lacO, is more efficiently repressed, indicating DNA-looping. To investigate the inefficient repression of Ptrc and cyanobacterial DNA-looping, we designed a Ptrc-derived promoter library consisting of single lacO promoters, including a version of Ptrc with a stronger lacO (Ptrc1O-proximal), and dual lacO promoters with varying inter-lacO distances (the Ptrc 2O-library). Results We first characterized artificial constitutive promoters and used one for engineering a LacI- expressing strain of Synechocystis. Using this strain, we observed that Ptrc 1O-proximal is similar to Ptrc in being inefficiently repressed. Further, the Ptrc 2O-library displays a periodic repression pattern that remains for both non- and induced conditions and decreases with longer inter-lacO distances, in both E. coli and Synechocystis. Repression of Ptrc 2O-library promoters with operators out of phase is less efficient in Synechocystis than in E. coli, whereas repression of promoters with lacO in phase is efficient even under induced conditions in Synechocystis. Two well-repressed Ptrc 2O promoters were highly active when tested in absence of LacI in Synechocystis. Conclusions The artificial constitutive promoters herein characterized can be utilized for expression in cyanobacteria, as demonstrated for LacI. The inefficient repression of Ptrc and Ptrc 1O-proximal in Synechocystis, as compared to E. coli, may be due to insufficient LacI expression, or differences in RNAP subunits. DNA-looping works as a transcriptional regulation mechanism similarly as in E. coli. DNA-looping contributes strongly to Ptrc 2O-library repression in Synechocystis, even though they contain the weakly-repressed primary lacO of Ptrc 1O-proximal and relatively low levels of LacI/cell. Hence, Synechocystis RNAP may be more sensitive to DNA-looping than E. coli RNAP, and/or the chromatin torsion resistance could be lower. Two strong and highly repressed Ptrc 2O promoters could be used without induction, or together with an unstable LacI.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3