Signatures of functional bacteriome structure in a tropical direct-developing amphibian species

Author:

Martins Renato A.,Greenspan Sasha E.ORCID,Medina DanielORCID,Buttimer ShannonORCID,Marshall Vanessa M.,Neely Wesley J.,Siomko Samantha,Lyra Mariana L.,Haddad Célio F. B.,São-Pedro Vinícius,Becker C. GuilhermeORCID

Abstract

Abstract Background Host microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbe Batrachochytrium dendrobatidis (Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil’s Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species. Results Intensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence in Ischnocnema henselii but no Bd detections in Haddadus binotatus. Haddadus binotatus carried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization. Conclusions Our findings suggest that community structure of the bacteriome might drive Bd resistance in H. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference106 articles.

1. Johnson DI. Bacterial virulence factors. Bacterial pathogens and their virulence factors. Berlin: Springer; 2018. p. 1–38.

2. Homei A, Worboys M. Candida: a disease of antibiotics. Fungal disease in Britain and the United States 1850–2000 mycoses and modernity. Berlin: Springer; 2013.

3. Megarbane B, Bruneel F, Chevret S, Thuong M, Wolff M, Regnier B, et al. Severe community-acquired bacterial pneumonia from Streptococcus pneumonia in HIV-infected patients: epidemiology and prognostic features of mortality. Pathol Biol (Paris). 1999;47:422–9.

4. Casadevall A, Pirofski LA. Host-pathogen interactions: the attributes of virulence. J Infect Dis. 2001;184:337–44.

5. Casadevall A, Pirofski LA. The damage-response framework of microbial pathogenesis. Nat Rev Microbiol. 2003;1:17–24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3