Abstract
Abstract
Background
Allele-specific methylation (ASM) occurs when DNA methylation patterns exhibit asymmetry among alleles. ASM occurs at imprinted loci, but its presence elsewhere across the human genome is indicative of wider importance in terms of gene regulation and disease risk. Here, we studied ASM by focusing on blood-based DNA collected from 24 subjects comprising a 3-generation pedigree from the Norfolk Island genetic isolate. We applied a genome-wide bisulphite sequencing approach with a genotype-independent ASM calling method to map ASM across the genome. Regions of ASM were then tested for enrichment at gene regulatory regions using Genomic Association Test (GAT) tool.
Results
In total, we identified 1.12 M CpGs of which 147,170 (13%) exhibited ASM (P ≤ 0.05). When including contiguous ASM signal spanning ≥ 2 CpGs, this condensed to 12,761 ASM regions (AMRs). These AMRs tagged 79% of known imprinting regions and most (98.1%) co-localised with known single nucleotide variants. Notably, miRNA and lncRNA showed a 3.3- and 1.8-fold enrichment of AMRs, respectively (P < 0.005). Also, the 5′ UTR and start codons each showed a 3.5-fold enrichment of AMRs (P < 0.005). There was also enrichment of AMRs observed at subtelomeric regions of many chromosomes. Five out of 11 large AMRs localised to the protocadherin cluster on chromosome 5.
Conclusions
This study shows ASM extends far beyond genomic imprinting in humans and that gene regulatory regions are hotspots for ASM. Future studies of ASM in pedigrees should help to clarify transgenerational inheritance patterns in relation to genotype and disease phenotypes.
Funder
National Health and Medical Research Council
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献