Author:
Thierry Benoit,Chaix Basile,Kestens Yan
Abstract
Abstract
Background
Health studies and mHealth applications are increasingly resorting to tracking technologies such as Global Positioning Systems (GPS) to study the relation between mobility, exposures, and health. GPS tracking generates large sets of geographic data that need to be transformed to be useful for health research. This paper proposes a method to test the performance of activity place detection algorithms, and compares the performance of a novel kernel-based algorithm with a more traditional time-distance cluster detection method.
Methods
A set of 750 artificial GPS tracks containing three stops each were generated, with various levels of noise.. A total of 9,000 tracks were processed to measure the algorithms’ capacity to detect stop locations and estimate stop durations, with varying GPS noise and algorithm parameters.
Results
The proposed kernel-based algorithm outperformed the traditional algorithm on most criteria associated to activity place detection, and offered a stronger resilience to GPS noise, managing to detect up to 92.3% of actual stops, and estimating stop duration within 5% error margins at all tested noise levels.
Conclusions
Capacity to detect activity locations is an important feature in a context of increasing use of GPS devices in health and place research. While further testing with real-life tracks is recommended, testing algorithms’ performance with artificial track sets for which characteristics are controlled is useful. The proposed novel algorithm outperformed the traditional algorithm under these conditions.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science
Reference37 articles.
1. Hariharan R, Toyama K: Project Lachesis: Parsing and Modeling Location Histories. Geographic Information Science. Volume 3234. Edited by: Egenhofer MJ, Freksa C, Miller HJ. 2004, Heidelberg: Springer Berlin, 106-124.
2. Ashbrook D, Starner T: 2002: IEEE. Learning significant locations and predicting user movement with GPS. 2002, 101-108.
3. Kang JH, Welbourne W, Stewart B, Borriello G: Extracting places from traces of locations. Proceedings of the 2nd ACM international workshop on Wireless mobile applications and services on WLAN hotspots. 2004, Philadelphia, PA, USA: ACM, 110-118.
4. Zheng Y, Zhang L, Xie X, Ma W-Y: Mining interesting locations and travel sequences from GPS trajectories. Proceedings of the 18th international conference on World wide web. 2009, Madrid, Spain: ACM, 791-800.
5. Zhou C, Bhatnagar N, Shekhar S, Terveen L: Data Engineering Workshop, 2007 IEEE 23rd International Conference on: 17–20 April 2007 2007. Mining Personally Important Places from GPS Tracks. 2007, 526: 517, 517-526.
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献