Detecting activity locations from raw GPS data: a novel kernel-based algorithm

Author:

Thierry Benoit,Chaix Basile,Kestens Yan

Abstract

Abstract Background Health studies and mHealth applications are increasingly resorting to tracking technologies such as Global Positioning Systems (GPS) to study the relation between mobility, exposures, and health. GPS tracking generates large sets of geographic data that need to be transformed to be useful for health research. This paper proposes a method to test the performance of activity place detection algorithms, and compares the performance of a novel kernel-based algorithm with a more traditional time-distance cluster detection method. Methods A set of 750 artificial GPS tracks containing three stops each were generated, with various levels of noise.. A total of 9,000 tracks were processed to measure the algorithms’ capacity to detect stop locations and estimate stop durations, with varying GPS noise and algorithm parameters. Results The proposed kernel-based algorithm outperformed the traditional algorithm on most criteria associated to activity place detection, and offered a stronger resilience to GPS noise, managing to detect up to 92.3% of actual stops, and estimating stop duration within 5% error margins at all tested noise levels. Conclusions Capacity to detect activity locations is an important feature in a context of increasing use of GPS devices in health and place research. While further testing with real-life tracks is recommended, testing algorithms’ performance with artificial track sets for which characteristics are controlled is useful. The proposed novel algorithm outperformed the traditional algorithm under these conditions.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3