Relating plasticity to dislocation properties by data analysis: scaling vs. machine learning approaches

Author:

Hiemer Stefan,Fan Haidong,Zaiser Michael

Abstract

AbstractPlasticity modelling has long relied on phenomenological models based on ad-hoc assumption of constitutive relations, which are then fitted to limited data. Other work is based on the consideration of physical mechanisms which seek to establish a physical foundation of the observed plastic deformation behavior through identification of isolated defect processes (’mechanisms’) which are observed either experimentally or in simulations and then serve to formulate so-called physically based models. Neither of these approaches is adequate to capture the complexity of plastic deformation which belongs into the realm of emergent collective phenomena, and to understand the complex interplay of multiple deformation pathways which is at the core of modern high performance structural materials. Data based approaches offer alternative pathways towards plasticity modelling whose strengths and limitations we explore here for a simple example, namely the interplay between rate and dislocation density dependent strengthening mechanisms in fcc metals.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference25 articles.

1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous systems. arXiv:1603.04467. (2016)

2. J. Bailey, P. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 5(53), 485–497 (1960)

3. C.M. Bishop, N.M. Nasrabadi, Pattern recognition and machine learning, vol. 4 (Springer, 2006)

4. S. Biswas, D. Fernandez Castellanos, M. Zaiser, Prediction of creep failure time using machine learning. Sci. Rep. 10(1), 1–11 (2010)

5. F. Chollet, et al. keras. (2015), https://keras.io. Accessed 20 Dec 2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3