Safety design study for energy harvesters

Author:

Gaidai OlegORCID,Yakimov Vladimir,Wang Fang,Xing Yihan,Zhang Fuxi

Abstract

AbstractModern offshore and onshore green energy engineering includes energy harvesting—as a result, extensive experimental investigations, as well as safety and reliability analysis are crucial for design and engineering. For this study, several wind-tunnel experiments under realistic in situ wind speed conditions have been conducted to examine the performance of galloping energy harvester. Next, a novel structural reliability approach is presented here that is especially well suited for multi-dimensional energy harvesting systems that have been either numerically simulated or analog observed during the representative time lapse, yielding an ergodic system time record. As demonstrated in this study, the advocated methodology may be used for risk assessment of dynamic system structural damage or failure. Furthermore, traditional reliability methodologies dealing with time series do not easily cope with the system’s high dimensionality, along with nonlinear cross-correlations between the system’s components. This study’s objective was to assess state-of-the-art reliability method, allowing efficient extraction of relevant statistical information, even from a limited underlying dataset. The methodology described in this study aims to assist designers when assessing nonlinear multidimensional dynamic energy harvesting system’s failure and hazard risks.

Publisher

Springer Science and Business Media LLC

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3