Differential weighting of temporal envelope cues from the low-frequency region for Mandarin sentence recognition in noise

Author:

Guo Yang,Zheng Zhong,Li Keyi,Sun Yuanyuan,Xia Liang,Qian Di,Feng Yanmei

Abstract

Abstract Background Temporal envelope cues are conveyed by cochlear implants (CIs) to hearing loss patients to restore hearing. Although CIs could enable users to communicate in clear listening environments, noisy environments still pose a problem. To improve speech-processing strategies used in Chinese CIs, we explored the relative contributions made by the temporal envelope in various frequency regions, as relevant to Mandarin sentence recognition in noise. Methods Original speech material from the Mandarin version of the Hearing in Noise Test (MHINT) was mixed with speech-shaped noise (SSN), sinusoidally amplitude-modulated speech-shaped noise (SAM SSN), and sinusoidally amplitude-modulated (SAM) white noise (4 Hz) at a + 5 dB signal-to-noise ratio, respectively. Envelope information of the noise-corrupted speech material was extracted from 30 contiguous bands that were allocated to five frequency regions. The intelligibility of the noise-corrupted speech material (temporal cues from one or two regions were removed) was measured to estimate the relative weights of temporal envelope cues from the five frequency regions. Results In SSN, the mean weights of Regions 1–5 were 0.34, 0.19, 0.20, 0.16, and 0.11, respectively; in SAM SSN, the mean weights of Regions 1–5 were 0.34, 0.17, 0.24, 0.14, and 0.11, respectively; and in SAM white noise, the mean weights of Regions 1–5 were 0.46, 0.24, 0.22, 0.06, and 0.02, respectively. Conclusions The results suggest that the temporal envelope in the low-frequency region transmits the greatest amount of information in terms of Mandarin sentence recognition for three types of noise, which differed from the perception strategy employed in clear listening environments.

Funder

Shenzhen Longhua District Science and Technology Innovation Bureau Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3