A spine segmentation method based on scene aware fusion network

Author:

Yilizati-Yilihamu Elzat Elham,Yang Jintao,Yang Zimeng,Rong Feihao,Feng Shiqing

Abstract

Abstract Background Intervertebral disc herniation, degenerative lumbar spinal stenosis, and other lumbar spine diseases can occur across most age groups. MRI examination is the most commonly used detection method for lumbar spine lesions with its good soft tissue image resolution. However, the diagnosis accuracy is highly dependent on the experience of the diagnostician, leading to subjective errors caused by diagnosticians or differences in diagnostic criteria for multi-center studies in different hospitals, and inefficient diagnosis. These factors necessitate the standardized interpretation and automated classification of lumbar spine MRI to achieve objective consistency. In this research, a deep learning network based on SAFNet is proposed to solve the above challenges. Methods In this research, low-level features, mid-level features, and high-level features of spine MRI are extracted. ASPP is used to process the high-level features. The multi-scale feature fusion method is used to increase the scene perception ability of the low-level features and mid-level features. The high-level features are further processed using global adaptive pooling and Sigmoid function to obtain new high-level features. The processed high-level features are then point-multiplied with the mid-level features and low-level features to obtain new high-level features. The new high-level features, low-level features, and mid-level features are all sampled to the same size and concatenated in the channel dimension to output the final result. Results The DSC of SAFNet for segmenting 17 vertebral structures among 5 folds are 79.46 ± 4.63%, 78.82 ± 7.97%, 81.32 ± 3.45%, 80.56 ± 5.47%, and 80.83 ± 3.48%, with an average DSC of 80.32 ± 5.00%. The average DSC was 80.32 ± 5.00%. Compared to existing methods, our SAFNet provides better segmentation results and has important implications for the diagnosis of spinal and lumbar diseases. Conclusions This research proposes SAFNet, a highly accurate and robust spine segmentation deep learning network capable of providing effective anatomical segmentation for diagnostic purposes. The results demonstrate the effectiveness of the proposed method and its potential for improving radiological diagnosis accuracy.

Funder

NSFC Key Projects of International Cooperation and Exchanges

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3