CXCL1/CXCR2 is involved in white matter injury in neonatal rats via the gut–brain axis

Author:

Yang Can,Feng Zhiyuan,Deng Hong,Dai Lu,He Ling,Yin Linlin,Zhao Jing

Abstract

Abstract Background This study aimed to investigate whether CXCL1/CXCR2 mediates intestinal injury or white matter injury by delivering inflammatory mediators through the gut–brain regulation axis. Methods Neonatal SD rats, regardless of sex, were administered 3% dextran sulfate sodium via intragastric administration at different time points to construct necrotizing enterocolitis (NEC) models. Meanwhile, hypoxia and ischemia were induced in 3 day-old SD rats to construct hypoxic–ischemic brain injury (HIBI) and NEC + HIBI models, without gender discrimination. Hematoxylin–eosin staining was used to observe pathological changes in neonatal rat intestinal and brain tissues. Western blotting detected CXCL1 and CXCR2 expression in NEC, HIBI, and NEC + HIBI rat intestinal and brain tissues. Results Compared with normal rats, pathological damage to periventricular white matter was observed in the NEC group. In addition to the increased mortality, the histopathological scores also indicated significant increases in brain and intestinal tissue damage in both HIBI and NEC + HIBI rats. Western blotting results suggested that CXCL1 and CXCR2 expression levels were upregulated to varying degrees in the intestinal and brain tissues of NEC, HIBI, and NEC + HIBI neonatal rats compared to that in the normal group. Compared with the HIBI group, the expression of CXCL1 and CXCR2 continued to increase in NEC + HIBI rats at different time points. Conclusions CXCL1/CXCR2 may be involved in white matter injury in neonatal rats by delivering intestinal inflammatory mediators through the gut–brain axis.

Funder

The School Cooperation Research Fund of Nanchong City

Research and development program of Affiliated Hospital of North Sichuan Medical College

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3