Neurologic effects of short-term treatment with a soluble epoxide hydrolase inhibitor after cardiac arrest in pediatric swine

Author:

O’Brien Caitlin E.ORCID,Santos Polan T.,Kulikowicz Ewa,Lee Jennifer K.,Koehler Raymond C.,Martin Lee J.

Abstract

Abstract Background Cardiac arrest (CA) is the most common cause of acute neurologic insult in children. Many survivors have significant neurocognitive deficits at 1 year of recovery. Epoxyeicosatrienoic acids (EETs) are multifunctional endogenous lipid signaling molecules that are involved in brain pathobiology and may be therapeutically relevant. However, EETs are rapidly metabolized to less active dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH), limiting their bioavailability. We hypothesized that sEH inhibition would improve outcomes after CA in an infant swine model. Male piglets (3–4 kg, 2 weeks old) underwent hypoxic-asphyxic CA. After resuscitation, they were randomized to intravenous treatment with an sEH inhibitor (TPPU, 1 mg/kg; n = 8) or vehicle (10% poly(ethylene glycol); n = 9) administered at 30 min and 24 h after return of spontaneous circulation. Two sham-operated groups received either TPPU (n = 9) or vehicle (n = 8). Neurons were counted in hematoxylin- and eosin-stained sections from putamen and motor cortex in 4-day survivors. Results Piglets in the CA + vehicle groups had fewer neurons than sham animals in both putamen and motor cortex. However, the number of neurons after CA did not differ between vehicle- and TPPU-treated groups in either anatomic area. Further, 20% of putamen neurons in the Sham + TPPU group had abnormal morphology, with cell body attrition and nuclear condensation. TPPU treatment also did not reduce neurologic deficits. Conclusion Treatment with an sEH inhibitor at 30 min and 24 h after resuscitation from asphyxic CA does not protect neurons or improve acute neurologic outcomes in piglets.

Funder

Johns Hopkins University

Pearl M. Stetler Research Fund

National Institute of Neurological Disorders and Stroke

American Heart Association

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3