Brain size reductions associated with endothelin B receptor mutation, a cause of Hirschsprung’s disease

Author:

Chen Ko-ChinORCID,Song Zan-Min,Croaker Geoffrey D.

Abstract

Abstract Background ETB has been reported to regulate neurogenesis and vasoregulation in foetal development. Its dysfunction was known to cause HSCR, an aganglionic colonic disorder with syndromic forms reported to associate with both small heads and developmental delay. We therefore asked, "is CNS maldevelopment a more general feature of ETB mutation?" To investigate, we reviewed the micro-CT scans of an ETB−/− model animal, sl/sl rat, and quantitatively evaluated the structural changes of its brain constituents. Methods Eleven neonatal rats generated from ETB+/− cross breeding were sacrificed. Micro-CT scans were completed following 1.5% iodine-staining protocols. All scans were reviewed for morphological changes. Selected organs were segmented semi-automatically post-NLM filtering: TBr, T-CC, T-CP, OB, Med, Cer, Pit, and S&I Col. Volumetric measurements were made using Drishti rendering software. Rat genotyping was completed following analysis. Statistical comparisons on organ volume, organ growth rate, and organ volume/bodyweight ratios were made between sl/sl and the control groups based on autosomal recessive inheritance. One-way ANOVA was also performed to evaluate potential dose-dependent effect. Results sl/sl rat has 16.32% lower body weight with 3.53% lower growth rate than the control group. Gross intracranial morphology was preserved in sl/sl rats. However, significant volumetric reduction of 20.33% was detected in TBr; similar reductions were extended to the measurements of T-CC, T-CP, OB, Med, and Pit. Consistently, lower brain and selected constituent growth rates were detected in sl/sl rat, ranging from 6.21% to 11.51% reduction. Lower organ volume/bodyweight ratio was detected in sl/sl rats, reflecting disproportional neural changes with respect to body size. No consistent linear relationships exist between ETB copies and intracranial organ size or growth rates. Conclusion Although ETB−/− mutant has a normal CNS morphology, significant size reductions in brain and constituents were detected. These structural changes likely arise from a combination of factors secondary to dysfunctional ET-1/ET-3/ETB signalling, including global growth impairment from HSCR-induced malnutrition and dysregulations in the neurogenesis, angiogenesis, and cerebral vascular control. These changes have important clinical implications, such as autonomic dysfunction or intellectual delay. Although further human study is warranted, our study suggested comprehensive managements are required for HSCR patients, at least in ETB−/− subtype.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3