Transcriptome assembly and microarray construction for Enchytraeus crypticus, a model oligochaete to assess stress response mechanisms derived from soil conditions

Author:

Castro-Ferreira Marta P,de Boer Tjalf E,Colbourne John K,Vooijs Riet,van Gestel Cornelis AM,van Straalen Nico M,Soares Amadeu MVM,Amorim Mónica JB,Roelofs Dick

Abstract

Abstract Background The soil worm Enchytraeus crypticus (Oligochaeta) is an ecotoxicology model species that, until now, was without genome or transcriptome sequence information. The present research aims at studying the transcriptome of Enchytraeus crypticus, sampled from multiple test conditions, and the construction of a high-density microarray for functional genomic studies. Results Over 1.5 million cDNA sequence reads were obtained representing 645 million nucleotides. After assembly, 27,296 contigs and 87,686 singletons were obtained, from which 44% and 25% are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. Concerning assembly quality, 84% of the contig sequences contain an open reading frame with a start codon while E. crypticus homologs were identified for 92% of the core eukaryotic genes. Moreover, 65% and 77% of the singletons and contigs without known homologs, respectively, were shown to be transcribed in an independent microarray experiment. An Agilent 180 K microarray platform was designed and validated by hybridizing cDNA from 4 day zinc- exposed E. crypticus to the concentration corresponding to 50% reduction in reproduction after three weeks (EC50). Overall, 70% of all probes signaled expression above background levels (mean signal + 1x standard deviation). More specifically, the probes derived from contigs showed a wider range of average intensities when compared to probes derived from singletons. In total, 522 significantly differentially regulated transcripts were identified upon zinc exposure. Several significantly regulated genes exerted predicted functions (e.g. zinc efflux, zinc transport) associated with zinc stress. Unexpectedly, the microarray data suggest that zinc exposure alters retro transposon activity in the E. crypticus genome. Conclusion An initial investigation of the E. crypticus transcriptome including an associated microarray platform for future studies proves to be a valuable resource to investigate functional genomics mechanisms of toxicity in soil environments and to annotate a potentially large number of lineage specific genes that are responsive to environmental stress conditions.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference44 articles.

1. Guidelines for Testing of Chemicals – Enchytraeid Reproduction Test. OECD 220. 2004, Paris: The Organisation for Economic Co-operation and Development

2. Didden W, Römbke J: Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems. Ecotoxicol Environ Saf. 2001, 50: 25-43. 10.1006/eesa.2001.2075.

3. Castro-Ferreira MP, Roelofs D, van Gestel CAM, Verweij RA, Soares AMVM, Amorim MJB: Enchytraeus crypticus as model species in soil ecotoxicology. Chemosphere. 2012, 87: 1222-1227. 10.1016/j.chemosphere.2012.01.021.

4. Soil Quality — Effects of Pollutants on Enchytraeidae (Enchytraeus sp.) – Determination of Effects on Reproduction and Survival. ISO 16387. 2004, Geneva: International Standards Organization

5. van Straalen N, Roelofs D: Genomics technology for assessing soil pollution. J Biol. 2008, 7: 19-10.1186/jbiol80.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3