Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture

Author:

Md-Mustafa Noor Diyana,Khalid Norzulaani,Gao Huan,Peng Zhiyu,Alimin Mohd Firdaus,Bujang Noraini,Ming Wong Sher,Mohd-Yusuf Yusmin,Harikrishna Jennifer A,Othman Rofina Yasmin

Abstract

Abstract Background Panduratin A extracted from Boesenbergia rotunda is a flavonoid reported to possess a range of medicinal indications which include anti-dengue, anti-HIV, anti-cancer, antioxidant and anti-inflammatory properties. Boesenbergia rotunda is a plant from the Zingiberaceae family commonly used as a food ingredient and traditional medicine in Southeast Asia and China. Reports on the health benefits of secondary metabolites extracted from Boesenbergia rotunda over the last few years has resulted in rising demands for panduratin A. However large scale extraction has been hindered by the naturally low abundance of the compound and limited knowledge of its biosynthetic pathway. Results Transcriptome sequencing and digital gene expression (DGE) analysis of native and phenylalanine treated Boesenbergia rotunda cell suspension cultures were carried out to elucidate the key genes differentially expressed in the panduratin A biosynthetic pathway. Based on experiments that show increase in panduratin A production after 14 days post treatment with exogenous phenylalanine, an aromatic amino acid derived from the shikimic acid pathway, total RNA of untreated and 14 days post-phenylalanine treated cell suspension cultures were extracted and sequenced using next generation sequencing technology employing an Illumina-Solexa platform. The transcriptome data generated 101, 043 unigenes with 50, 932 (50.41%) successfully annotated in the public protein databases; including 49.93% (50, 447) in the non-redundant (NR) database, 34.63% (34, 989) in Swiss-Prot, 24,07% (24, 316) in Kyoto Encyclopedia of Genes and Genomes (KEGG) and 16.26% (16, 426) in Clusters of Orthologous Groups (COG). Through DGE analysis, we found that 14, 644 unigenes were up-regulated and 14, 379 unigenes down-regulated in response to exogenous phenylalanine treatment. In the phenylpropanoid pathway leading to the proposed panduratin A production, 2 up-regulated phenylalanine ammonia-lyase (PAL), 3 up-regulated 4-coumaroyl:coenzyme A ligase (4CL) and 1 up-regulated chalcone synthase (CHS) were found. Conclusions This is the first report of Boesenbergia rotunda de novo transcriptome data that could serve as a reference for gene or enzyme functional studies in the Zingiberaceae family. Although enzymes that are directly involved in the panduratin A biosynthetic pathway were not completely elucidated, the data provides an overall picture of gene regulation patterns leading to panduratin A production.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference90 articles.

1. Perry LM, Metzger J: Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses. 1980, Cambridge, MA: MIT Press

2. Larsen K: Preliminary checklist of the Zingiberaceae of Thailand. Thai Forest Bull (Bot). 1996, 24: 35-49.

3. Burkill IH, Birtwistle W, Foxworthy FW, Scrivenor JB, Watson JG: A dictionary of the Economic Products of the Malay Peninsula. 1966, Kuala Lumpur, Malaysia: Published on behalf of the governments of Malaysia and Singapore by the Ministry of Agriculture and cooperatives, 1:

4. Saralamp P, Chuakul W, Temsiririrkkul R, Clayton T: Medicinal Plants in Thailand. 1996, Bangkok, Thailand: Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 1:

5. Ching AYL, Tang SW, Sukari MA, Lian GEC, Rahmani M, Khalid K: Characterization of flavonoid derivatives from Boesenbergia rotunda (L.). Malays J Ann Sci. 2007, 11 (1): 154-159.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3