Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium

Author:

Ansong Charles,Tolić Nikola,Purvine Samuel O,Porwollik Steffen,Jones Marcus,Yoon Hyunjin,Payne Samuel H,Martin Jessica L,Burnet Meagan C,Monroe Matthew E,Venepally Pratap,Smith Richard D,Peterson Scott N,Heffron Fred,McClelland Michael,Adkins Joshua N

Abstract

Abstract Background Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. However, determining protein-coding genes for most new genomes is almost completely performed by inference using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function. Results We experimentally annotated the bacterial pathogen Salmonella Typhimurium 14028, using "shotgun" proteomics to accurately uncover the translational landscape and post-translational features. The data provide protein-level experimental validation for approximately half of the predicted protein-coding genes in Salmonella and suggest revisions to several genes that appear to have incorrectly assigned translational start sites, including a potential novel alternate start codon. Additionally, we uncovered 12 non-annotated genes missed by gene prediction programs, as well as evidence suggesting a role for one of these novel ORFs in Salmonella pathogenesis. We also characterized post-translational features in the Salmonella genome, including chemical modifications and proteolytic cleavages. We find that bacteria have a much larger and more complex repertoire of chemical modifications than previously thought including several novel modifications. Our in vivo proteolysis data identified more than 130 signal peptide and N-terminal methionine cleavage events critical for protein function. Conclusion This work highlights several ways in which application of proteomics data can improve the quality of genome annotations to facilitate novel biological insights and provides a comprehensive proteome map of Salmonella as a resource for systems analysis.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An antibody targeting type III secretion system induces broad protection against Salmonella and Shigella infections;PLOS Neglected Tropical Diseases;2021-03-12

2. SipD and IpaD induce a cross-protection against Shigella and Salmonella infections;PLOS Neglected Tropical Diseases;2020-05-28

3. Bacterial riboproteogenomics: the era of N-terminal proteoform existence revealed;FEMS Microbiology Reviews;2020-05-09

4. Expanding the Vocabulary of Peptide Signals in Streptococcus mutans;Frontiers in Cellular and Infection Microbiology;2019-06-06

5. Peptide refinement by using a stochastic search;Journal of the Royal Statistical Society: Series C (Applied Statistics);2018-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3