Author:
Suster Maximiliano L,Sumiyama Kenta,Kawakami Koichi
Abstract
Abstract
Background
Bacterial artificial chromosomes (BACs) are among the most widely used tools for studies of gene regulation and function in model vertebrates, yet methods for predictable delivery of BAC transgenes to the genome are currently limited. This is because BAC transgenes are usually microinjected as naked DNA into fertilized eggs and are known to integrate as multi-copy concatamers in the genome. Although conventional methods for BAC transgenesis have been very fruitful, complementary methods for generating single copy BAC integrations would be desirable for many applications.
Results
We took advantage of the precise cut-and-paste behavior of a natural transposon, Tol2, to develop a new method for BAC transgenesis. In this new method, the minimal sequences of the Tol2 transposon were used to deliver precisely single copies of a ~70 kb BAC transgene to the zebrafish and mouse genomes. We mapped the BAC insertion sites in the genome by standard PCR methods and confirmed transposase-mediated integrations.
Conclusion
The Tol2 transposon has a surprisingly large cargo capacity that can be harnessed for BAC transgenesis. The precise delivery of single-copy BAC transgenes by Tol2 represents a useful complement to conventional BAC transgenesis, and could aid greatly in the production of transgenic fish and mice for genomics projects, especially those in which single-copy integrations are desired.
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Giraldo P, Montoliu L: Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res. 2001, 10 (2): 83-103. 10.1023/A:1008918913249.
2. Nagy A, Gertsenstein M, Vintersten K, Behringer R: Manipulating the Mouse Embryo: A Laboratory Manual. 2001, Cold Spring Harbor Press, Cold Spring Harbor, 3
3. Vintersten K, Testa G, Naumann R, Anastassiadis K, Stewart AF: Bacterial artificial chromosome transgenesis through pronuclear injection of fertilized mouse oocytes. Methods Mol Biol. 2008, 415: 83-100. full_text.
4. Jessen JR, Willett CE, Lin S: Artificial chromosome transgenesis reveals long-distance negative regulation of rag1 in zebrafish. Nat Genet. 1999, 23 (1): 15-16. 10.1038/12609.
5. Yang Z, Jiang H, Chachainasakul T, Gong S, Yang XW, Heintz N, Lin S: Modified bacterial artificial chromosomes for zebrafish transgenesis. Methods. 2006, 39 (3): 183-188. 10.1016/j.ymeth.2006.04.011.
Cited by
137 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献