Aligned nanofibrous collagen membranes from fish swim bladder as a tough and acid-resistant suture for pH-regulated stomach perforation and tendon rupture

Author:

Luan Zhaohui,Liu Shuang,Wang Wei,Xu Kaige,Ye Shaosong,Dan Ruijue,Zhang Hong,Shu Zhenzhen,Wang Tongchuan,Fan Chaoqiang,Xing Malcolm,Yang Shiming

Abstract

Abstract Background Wound closure in the complex body environment places higher requirements on suture’s mechanical and biological performance. In the scenario of frequent mechanical gastric motility and extremely low pH, single functional sutures have limitations in dealing with stomach bleeding trauma where the normal healing will get deteriorated in acid. It necessitates to advance suture, which can regulate wounds, resist acid and intelligently sense stomach pH. Methods Based on fish swim bladder, a double-stranded drug-loaded suture was fabricated. Its cytotoxicity, histocompatibility, mechanical properties, acid resistance and multiple functions were verified. Also, suture’s performance suturing gastric wounds and Achilles tendon was verified in an in vivo model. Results By investigating the swim bladder’s multi-scale structure, the aligned tough collagen fibrous membrane can resist high hydrostatic pressure. We report that the multi-functional sutures on the twisted and aligned collagen fibers have acid resistance and low tissue reaction. Working with an implantable “capsule robot”, the smart suture can inhibit gastric acid secretion, curb the prolonged stomach bleeding and monitor real-time pH changes in rabbits and pigs. The suture can promote stomach healing and is strong enough to stitch the fractured Achilles tendon. Conclusions As a drug-loaded absorbable suture, the suture shows excellent performance and good application prospect in clinical work.

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3