Modularized bioceramic scaffold/hydrogel membrane hierarchical architecture beneficial for periodontal tissue regeneration in dogs

Author:

Wei Yingming,Wang Zhongxiu,Han Jiayin,Jiang Xiaojian,Lei Lihong,Yang Xianyan,Sun Weilian,Gou Zhongru,Chen LiliORCID

Abstract

Abstract Background Destruction of alveolar bone and periodontal ligament due to periodontal disease often requires surgical treatment to reconstruct the biological construction and functions of periodontium. Despite significant advances in dental implants in the past two decades, it remains a major challenge to adapt bone grafts and barrier membrane in surgery due to the complicated anatomy of tooth and defect contours. Herein, we developed a novel biphasic hierarchical architecture with modularized functions and shape based on alveolar bone anatomy to achieve the ideal outcomes. Methods The integrated hierarchical architecture comprising of nonstoichiometric wollastonite (nCSi) scaffolds and gelatin methacrylate/silanized hydroxypropyl methylcellulose (GelMA/Si-HPMC) hydrogel membrane was fabricated by digital light processing (DLP) and photo-crosslinked hydrogel injection technique respectively. The rheological parameters, mechanical properties and degradation rates of composite hydrogels were investigated. L-929 cells were cultured on the hydrogel samples to evaluate biocompatibility and cell barrier effect. Cell scratch assay, alkaline phosphatase (ALP) staining, and alizarin red (AR) staining were used to reveal the migration and osteogenic ability of hydrogel membrane based on mouse mandible-derived osteoblasts (MOBs). Subsequently, a critical-size one-wall periodontal defect model in dogs was prepared to evaluate the periodontal tissue reconstruction potential of the biphasic hierarchical architecture. Results The personalized hydrogel membrane integrating tightly with the nCSi scaffolds exhibited favorable cell viability and osteogenic ability in vitro, while the scratch assay showed that osteoblast migration was drastically correlated with Si-HPMC content in the composite hydrogel. The equivalent composite hydrogel has proven good physiochemical properties, and its membrane exhibited potent occlusive effect in vivo; meanwhile, the hierarchical architectures exerted a strong periodontal regeneration capability in the periodontal intrabony defect models of dogs. Histological examination showed effective bone and periodontal ligament regeneration in the biomimetic architecture system; however, soft tissue invasion was observed in the control group. Conclusions Our results suggested that such modularized hierarchical architectures have excellent potential as a next-generation oral implants, and this precisely tuned guided tissue regeneration route offer an opportunity for improving periodontal damage reconstruction and reducing operation sensitivity. Graphical Abstract

Funder

Key Research and Development Program of Zhejiang Province Foundation

Natural Science Foundation of Zhejiang Province

Scientific Research Fund of Zhejiang Provincial Education Department

Basic Public Welfare Research Program of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3