Abstract
AbstractExtracellular vesicles (EVs) are nanosized particles that are released from cells and reflect the characteristics of the mother cell. Recently, the EVs have been used in several types of studies across many different fields. In the field of EV research, multiple cell culture and EV isolation techniques have been highlighted in importance. Various strategies, including exclusive component culture media, three-dimensional (3D) cultures, and hypoxic conditions, have been proposed for the cell culture to control function of the EVs. Ultracentrifugation, ultrafiltration, precipitation, and tangential flow filtration (TFF) have been utilized for EV isolation. Although isolated EVs have their own functionalities, several researchers are trying to functionalize EVs by applying various engineering approaches. Gene editing, exogenous, endogenous, and hybridization methods are the four well-known types of EV functionalization strategies. EV engineered through these processes has been applied in the field of regenerative medicine, including kidney diseases, osteoarthritis, rheumatoid arthritis, nervous system-related diseases, and others. In this review, it was focused on engineering approaches for EV functionalization and their applications in regenerative medicine.Graphical Abstract
Publisher
American Association for the Advancement of Science (AAAS)
Subject
Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献