Intrinsic nucleus-targeted ultra-small metal–organic framework for the type I sonodynamic treatment of orthotopic pancreatic carcinoma

Author:

Zhang Tao,Sun Yu,Cao Jing,Luo Jiali,Wang Jing,Jiang Zhenqi,Huang PintongORCID

Abstract

Abstract Background Sonodynamic therapy (SDT) strategies exhibit a high tissue penetration depth and can achieve therapeutic efficacy by facilitating the intertumoral release of reactive oxygen species (ROS) with a short lifespan and limited diffusion capabilities. The majority of SDT systems developed to date are of the highly O2-dependent type II variety, limiting their therapeutic utility in pancreatic cancer and other hypoxic solid tumor types. Results Herein, a nucleus-targeted ultra-small Ti-tetrakis(4-carboxyphenyl)porphyrin (TCPP) metal–organic framework (MOF) platform was synthesized and shown to be an effective mediator of SDT. This MOF was capable of generating large quantities of ROS in an oxygen-independent manner in response to low-intensity ultrasound (US) irradiation (0.5 W cm−2), thereby facilitating both type I and type II SDT. This approach thus holds great promise for the treatment of highly hypoxic orthotopic pancreatic carcinoma solid tumors. This Ti-TCPP MOF was able to induce in vitro cellular apoptosis by directly destroying DNA and inducing S phase cell cycle arrest following US irradiation. The prolonged circulation, high intratumoral accumulation, and nucleus-targeting attributes of these MOF preparations significantly also served to significantly inhibit orthotopic pancreatic tumor growth and prolong the survival of tumor-bearing mice following Ti-TCPP + US treatment. Moreover, this Ti-TCPP MOF was almost completely cleared from mice within 7 days of treatment, and no apparent treatment-associated toxicity was observed. Conclusion The nucleus-targeted ultra-small Ti-TCPP MOF developed herein represents an effective approach to the enhanced SDT treatment of tumors in response to low-intensity US irradiation. Graphic abstract

Funder

innovative research group project of the national natural science foundation of china

national natural science foundation of china

key research and development program of zhejiang province

natural science foundation of zhejiang province

china postdoctoral science foundation

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3