Zn-Shik-PEG nanoparticles alleviate inflammation and multi-organ damage in sepsis

Author:

Guo Jie,Miao Yuqing,Nie Fayi,Gao Fei,Li Hua,Wang Yuan,Liu Qi,Zhang Tingbin,Yang Xiaohang,Liu Li,Fan Haiming,Wang Qiang,Qiao Haifa

Abstract

AbstractSepsis is defined as a life-threatening organ dysfunction caused by excessive formation of reactive oxygen species (ROS) and dysregulated inflammatory response. Previous studies have reported that shikonin (Shik) possess prominent anti-inflammatory and antioxidant effects and holds promise as a potential therapeutic drug for sepsis. However, the poor water solubility and the relatively high toxicity of shikonin hamper its clinical application. To address this challenge, we constructed Zn2+-shikonin nanoparticles, hereafter Zn-Shik-PEG NPs, based on an organic-inorganic hybridization strategy of metal-polyphenol coordination to improve the aqueous solubility and biosafety of shikonin. Mechanistic studies suggest that Zn-Shik-PEG NPs could effectively clear intracellular ROS via regulating the Nrf2/HO-1 pathway, meanwhile Zn-Shik-PEG NPs could inhibit NLRP3 inflammasome-mediated activation of inflammation and apoptosis by regulating the AMPK/SIRT1 pathway. As a result, the Zn-Shik-PEG NPs demonstrated excellent therapeutic efficacies in lipopolysaccharide (LPS) as well as cecal ligation puncture (CLP) induced sepsis model. These findings suggest that Zn-Shik-PEG NPs may have therapeutic potential for the treatment of other ROS-associated and inflammatory diseases.

Funder

Key Scientific Research Program of Shaanxi Provincial Education Department

Natural Science Basic Research Plan in Shaanxi Province of China

Shaanxi Province TCM "double chain integration" young and middle-aged scientific research innovation team construction project

National Natural Science Foundation of China

Tech innovator program of Shaanxi Province

Xin-Huangpu Joint Innovation Institute of Chinese Medicine

the Natural Key R&D Program of China

Key Laboratory Program of Administration of Traditional Chinse Medicine of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3