Immuno-activated mesenchymal stem cell living electrospun nanofibers for promoting diabetic wound repair

Author:

Gao Shaoying,Chen Tao,Wang Zhen,Ji Ping,Xu Lin,Cui Wenguo,Wang Ying

Abstract

AbstractDiabetic wound is the leading cause of non-traumatic amputations in which oxidative stress and chronic inflammation are main factors affecting wound healing. Although mesenchymal stem cells (MSCs) as living materials can promote skin regeneration, they are still vulnerable to oxidative stress which limits their clinical applications. Herein, we have prepared (polylactic-co-glycolic acid) (PLGA) nanofibers electrospun with LPS/IFN-γ activated macrophage cell membrane. After defining physicochemical properties of the nanofibers modified by LPS/IFN-γ activated mouse RAW264.7 cell derived membrane (RCM-fibers), we demonstrated that the RCM-fibers improved BMMSC proliferation and keratinocyte migration upon oxidative stress in vitro. Moreover, bone marrow derived MSCs (BMMSCs)-loaded RCM-fibers (RCM-fiber-BMMSCs) accelerated wound closure accompanied by rapid re-epithelialization, collagen remodeling, antioxidant stress and angiogenesis in experimental diabetic wound healing in vivo. Transcriptome analysis revealed the upregulation of genes related to wound healing in BMMSCs when co-cultured with the RCM-fibers. Enhanced healing capacity of RCM-fiber-BMMSCs living material was partially mediated through CD200-CD200R interaction. Similarly, LPS/IFN-γ activated THP-1 cell membrane coated nanofibers (TCM-fibers) exhibited similar improvement of human BMMSCs (hBMMSCs) on diabetic wound healing in vivo. Our results thus demonstrate that LPS/IFN-γ activated macrophage cell membrane-modified nanofibers can in situ immunostimulate the biofunctions of BMMSCs, making this novel living material promising in wound repair of human diabetes. Graphical Abstract

Funder

Science and Technology Fund Project of Guizhou Provincial Health Commission

Program for High level innovative talents in Guizhou Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3