A pump-free and high-throughput microfluidic chip for highly sensitive SERS assay of gastric cancer-related circulating tumor DNA via a cascade signal amplification strategy

Author:

Cao Xiaowei,Ge Shengjie,Hua Weiwei,Zhou Xinyu,Lu Wenbo,Gu Yingyan,Li Zhiyue,Qian Yayun

Abstract

AbstractCirculating tumour DNA (ctDNA) has emerged as an ideal biomarker for the early diagnosis and prognosis of gastric cancer (GC). In this work, a pump-free, high-throughput microfluidic chip coupled with catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) as the signal cascade amplification strategy (CHA–HCR) was developed for surface-enhanced Raman scattering (SERS) assays of PIK3CA E542K and TP53 (two GC-related ctDNAs). The chip consisted of six parallel functional units, enabling the simultaneous analysis of multiple samples. The pump-free design and hydrophilic treatment with polyethylene glycol (PEG) realized the automatic flow of reaction solutions in microchannels, eliminating the dependence on external heavy-duty pumps and significantly improving portability. In the reaction region of the chip, products generated by target-triggered CHA initiated the HCR, forming long nicked double-stranded DNA (dsDNA) on the Au nanobowl (AuNB) array surface, to which numerous SERS probes (Raman reporters and hairpin DNA-modified Cu2O octahedra) were attached. This CHA–HCR strategy generated numerous active “hot spots” around the Cu2O octahedra and AuNB surface, significantly enhancing the SERS signal intensity. Using this chip, an ultralow limit of detection (LOD) for PIK3CA E542K (1.26 aM) and TP53 (2.04 aM) was achieved, and the whole process was completed within 13 min. Finally, a tumour-bearing mouse model was established, and ctDNA levels in mouse serum at different stages were determined. To verify the experimental accuracy, the gold-standard qRT–PCR assay was utilized, and the results showed a high degree of consistency. Thus, this rapid, sensitive and cost-effective SERS microfluidic chip has potential as an ideal detection platform for ctDNA monitoring.

Funder

the National Natural Science Foundation of China

the Social Development Foundation of Jiangsu

the Natural Science Foundation of the Jiangsu Higher Education Institutions of China

High-end talent support program of Yangzhou University

the QingLan Project of Yangzhou University

the Major Programs of Natural Science Foundation of higher education in Jiangsu Province

the Administration of Traditional Chinese Medicine Project of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3