“Dual sensitive supramolecular curcumin nanoparticles” in “advanced yeast particles” mediate macrophage reprogramming, ROS scavenging and inflammation resolution for ulcerative colitis treatment

Author:

Han Xiaoqin,Luo Ruifeng,Qi Shanshan,Wang Yanli,Dai Linxin,Nie Wenbiao,Lin Meisi,He Haoqi,Ye Naijing,Fu Chaomei,You Yu,Fu Shu,Gao Fei

Abstract

AbstractUlcerative colitis (UC) faces some barriers in oral therapy, such as how to safely deliver drugs to the colon and accumulate in the colon lesions. Hence, we report an advanced yeast particles system loaded with supramolecular nanoparticles with ROS scavenger (curcumin) to treat UC by reducing oxidative stress state and inflammatory response and accelerating the reprogramming of macrophages. In this study, the dual-sensitive materials are bonded on β-cyclodextrin (β-CD), the D-mannose (Man) is modified to adamantane (ADA), and then loaded with curcumin (CUR), to form a functional supramolecular nano-delivery system (Man-CUR NPs) through the host-guest interaction. To improve gastrointestinal stability and colonic accumulation of Man-CUR NPs, yeast cell wall microparticles (YPs) encapsulated Man-CUR NPs to form Man-CUR NYPs via electrostatic adsorption and vacuum extrusion technologies. As expected, the YPs showed the strong stability in complex gastrointestinal environment. In addition, the Man modified supramolecular nanoparticles demonstrated excellent targeting ability to macrophages in the in vitro cellular uptake study and the pH/ROS sensitive effect of Man-CUR NPs was confirmed by the pH/ROS-dual stimulation evaluation. They also enhanced lipopolysaccharide (LPS)-induced inflammatory model in macrophages through downregulation of pro-inflammatory factors, upregulation of anti-inflammatory factors, M2 macrophage polarization, and scavenging the excess ROS. Notably, in DSS-induced mice colitis model, Man-CUR NYPs can reduce the inflammatory responses by modulating TLR4/NF-κB signaling pathways, alleviate oxidative stress by Nrf2/HO-1 signaling pathway, promote macrophages reprogramming and improve the favorable recovery of the damaged colonic tissue. Taken together, this study not only provides strategy for “supramolecular curcumin nanoparticles with pH/ROS sensitive and multistage therapeutic effects” in “advanced yeast particles”, but also provided strong theoretical support multi-effect therapy for UC.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3