Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer

Author:

Yadav PriyaORCID,Ambudkar Suresh V.ORCID,Rajendra Prasad N.ORCID

Abstract

AbstractCancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expression of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contributing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor heterogeneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core–shell quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell lung, head and neck and breast cancers. Graphical Abstract

Funder

D. S. Kothari Postdoctoral Fellowship

Intramural Research Program, National Institutes of Health

Annamalai University, Tamil Nadu, India

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Reference338 articles.

1. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15:1243–53.

2. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer. World Health Organization. Accessed 9 Aug 2022.

3. Megget K: Chemotherapy causes death in more than 25% of cancer patients. In PharmaTimes online. https://www.pharmatimes.com/news/chemotherapy_causes_death_in_more_than_25_of_cancer_patients_986391: PharmaTimes Media Limited; 2008. Accessed 9 Aug 2022.

4. Boyle JM, Kuryba A, Cowling TE, van der Meulen J, Fearnhead NS, Walker K, Braun MS, Aggarwal A. Survival outcomes associated with completion of adjuvant oxaliplatin-based chemotherapy for stage III colon cancer: a national population-based study. I J Cancer. 2022;150:335–46.

5. Überrück L, Nadiradze G, Yurttas C, Königsrainer A, Königsrainer I, Horvath P. In-hospital mortality and complication rates according to health insurance data in patients undergoing hyperthermic intraperitoneal chemotherapy for peritoneal surface malignancies in Germany. Annals Surgical Oncol. 2021;28:3823–30.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3