Insights into the angiogenic effects of nanomaterials: mechanisms involved and potential applications

Author:

Liu Wenjing,Zhang Guilan,Wu Junrong,Zhang Yanli,Liu Jia,Luo Haiyun,Shao Longquan

Abstract

AbstractThe vascular system, which transports oxygen and nutrients, plays an important role in wound healing, cardiovascular disease treatment and bone tissue engineering. Angiogenesis is a complex and delicate regulatory process. Vascular cells, the extracellular matrix (ECM) and angiogenic factors are indispensable in the promotion of lumen formation and vascular maturation to support blood flow. However, the addition of growth factors or proteins involved in proangiogenic effects is not effective for regulating angiogenesis in different microenvironments. The construction of biomaterial scaffolds to achieve optimal growth conditions and earlier vascularization is undoubtedly one of the most important considerations and major challenges among engineering strategies. Nanomaterials have attracted much attention in biomedical applications due to their structure and unique photoelectric and catalytic properties. Nanomaterials not only serve as carriers that effectively deliver factors such as angiogenesis-related proteins and mRNA but also simulate the nano-topological structure of the primary ECM of blood vessels and stimulate the gene expression of angiogenic effects facilitating angiogenesis. Therefore, the introduction of nanomaterials to promote angiogenesis is a great helpful to the success of tissue regeneration and some ischaemic diseases. This review focuses on the angiogenic effects of nanoscaffolds in different types of tissue regeneration and discusses the influencing factors as well as possible related mechanisms of nanomaterials in endothelial neovascularization. It contributes novel insights into the design and development of novel nanomaterials for vascularization and therapeutic applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Medical Scientific Research Foundation of Guangdong Province

Science Foundation of Southern Medical University

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3