TH-302-loaded nanodrug reshapes the hypoxic tumour microenvironment and enhances PD-1 blockade efficacy in gastric cancer

Author:

Wang Zhixiong,Zhu Menglin,Dong Runyu,Cao Danping,Li Yanna,Chen Zhiqiang,Cai Juan,Zuo Xueliang

Abstract

Abstract Background Hypoxia, a common characteristic of the tumour microenvironment, is involved in tumour progression and immune evasion. Targeting the hypoxic microenvironment has been implicated as a promising antitumour therapeutic strategy. TH-302 can be selectively activated under hypoxic conditions. However, the effectiveness of TH-302 in gastric cancer combined immunotherapy remains unclear. Methods We designed mPEG-PLGA-encapsulated TH-302 (TH-302 NPs) to target the hypoxic area of tumour tissues. A particle size analyzer was used to measure the average size and zeta potential of TH-302 NPs. The morphology was observed by transmission electron microscopy and scanning electron microscopy. The hypoxic area of tumour tissues was examined by immunofluorescence assays using pimonidazole. Flow cytometry analysis was performed to measure the levels of TNF-α, IFN-γ, and granzyme B. The synergistic antitumour activity of the combination of TH-302 NPs with anti-PD-1 (α-PD-1) therapy was assessed in vitro and in vivo. Haematoxylin and eosin staining of major organs and biochemical indicator detection were performed to investigate the biological safety of TH-302 NPs in vivo. Results TH-302 NPs inhibited the proliferation and promoted the apoptosis of gastric cancer cells under hypoxic conditions. In vitro and in vivo experiments confirmed that TH-302 NPs could effectively alleviate tumour hypoxia. TH-302 NPs exhibited high bioavailability, effective tumour-targeting ability and satisfactory biosafety. Moreover, the combination of TH-302 NPs with α-PD-1 significantly improved immunotherapeutic efficacy in vivo. Mechanistically, TH-302 NPs reduced the expression of HIF-1α and PD-L1, facilitated the infiltration of CD8+ T cells and increased the levels of TNF-α, IFN-γ, and granzyme B in tumours, thereby enhancing the efficacy of α-PD-1 therapy. Conclusion TH-302 NPs alleviated the hypoxic tumour microenvironment and enhanced the efficacy of PD-1 blockade. Our results provide evidence that TH-302 NPs can be used as a safe and effective nanodrug for combined immunotherapy in gastric cancer treatment.

Funder

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of Anhui Education Department for Excellent Young Scholars

Science and Technology Project of Wuhu City

Talent Introduction Science Foundation of Yijishan Hospital, Wannan Medical College

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Natural Science Foundation of Anhui Education Department for Distinguished Young Scholars

Support Plan for Outstanding Young Talents of Anhui Education Department

Key Research and Development Project of Anhui Province

Funding of “Peak” Training Program for Scientific Research of Yijishan Hospital, Wannan Medical College

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3