M2 microglia-derived exosome-loaded electroconductive hydrogel for enhancing neurological recovery after spinal cord injury

Author:

Guan Pengfei,Fan Lei,Zhu Zhaobo,Yang Qinfeng,Kang Xinchang,Li Junji,Zhang Zuyu,Liu Shencai,Liu Can,Wang Xuelian,Xu Jing,Wang Kun,Sun Yongjian

Abstract

AbstractElectroconductive hydrogels offer a promising avenue for enhancing the repair efficacy of spinal cord injuries (SCI) by restoring disrupted electrical signals along the spinal cord’s conduction pathway. Nonetheless, the application of hydrogels composed of diverse electroconductive materials has demonstrated limited capacity to mitigate the post-SCI inflammatory response. Recent research has indicated that the transplantation of M2 microglia effectively fosters SCI recovery by attenuating the excessive inflammatory response. Exosomes (Exos), small vesicles discharged by cells carrying similar biological functions to their originating cells, present a compelling alternative to cellular transplantation. This investigation endeavors to exploit M2 microglia-derived exosomes (M2-Exos) successfully isolated and reversibly bonded to electroconductive hydrogels through hydrogen bonding for synergistic promotion of SCI repair to synergistically enhance SCI repair. In vitro experiments substantiated the significant capacity of M2-Exos-laden electroconductive hydrogels to stimulate the growth of neural stem cells and axons in the dorsal root ganglion and modulate microglial M2 polarization. Furthermore, M2-Exos demonstrated a remarkable ability to mitigate the initial inflammatory reaction within the injury site. When combined with the electroconductive hydrogel, M2-Exos worked synergistically to expedite neuronal and axonal regeneration, substantially enhancing the functional recovery of rats afflicted with SCI. These findings underscore the potential of M2-Exos as a valuable reparative factor, amplifying the efficacy of electroconductive hydrogels in their capacity to foster SCI rehabilitation.

Funder

The President Funding of Third Affiliated Hospital of Southern Medical University

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3