Injectable hydrogel loaded with lysed OK-432 and doxorubicin for residual liver cancer after incomplete radiofrequency ablation

Author:

Cao Yanyan,Sun Tao,Sun Bo,Zhang Guilin,Liu Jiayun,Liang Bin,Zheng Chuansheng,Kan Xuefeng

Abstract

Abstract Objective To investigate the efficacy of an injectable hydrogel loaded with lysed OK-432 (lyOK-432) and doxorubicin (DOX) for residual liver cancer after incomplete radiofrequency ablation (iRFA) of hepatocellular carcinoma (HCC), and explore the underlying mechanism. Materials and Methods The effect of OK-432 and lyOK-432 was compared in activating dendritic cells (DCs). RADA16-I (R) peptide was dissolved in a mixture of lyOK-432 (O) and DOX (D) to develop an ROD hydrogel. The characteristics of ROD hydrogel were evaluated. Tumor response and mice survival were measured after different treatments. The number of immune cells and cytokine levels were measured, and the activation of cGAS/STING/IFN-I signaling pathway in DC was evaluated both in vitro and in vivo. Results LyOK-432 was more effective than OK-432 in promoting DC maturation and activating the IFN-I pathway. ROD was an injectable hydrogel for effectively loading lyOK-432 and DOX, and presented the controlled-release property. ROD treatment achieved the highest tumor necrosis rate (p < 0.001) and the longest survival time (p < 0.001) compared with the other therapies. The ROD group also displayed the highest percentages of DCs, CD4+ T cells and CD8+ T cells (p < 0.001), the lowest level of Treg cells (p < 0.001), and the highest expression levels of IFN-γ and TNF-α (p < 0.001) compared with the other groups. The expression levels of pSTING, pIRF3, and IFN-β in DCs were obviously higher after treatment of lyOK-432 in combination with DOX than the other therapies. The surviving mice in the ROD group showed a growth inhibition of rechallenged subcutaneous tumor. Conclusion The novel ROD peptide hydrogel induced an antitumor immunity by activating the STING pathway, which was effective for treating residual liver cancer after iRFA of HCC.

Funder

National Natural Science Foundation of China

the Outstanding Youth Foundation of Hubei Province, China

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3