Nanoscale microenvironment engineering for expanding human hair follicle stem cell and revealing their plasticity

Author:

Chen Peng,Zhang Feifei,Fan Zhexiang,Shen Tianding,Liu Bingcheng,Chen Ruosi,Qu Qian,Wang Jin,Miao Yong,Hu ZhiqiORCID

Abstract

Abstract Background Periodically regenerated hair follicles provide an excellent research model for studying tissue regeneration and stem cell homeostasis. Periodic activation and differentiation of hair follicle stem cells (HFSCs) fuel cyclical bouts of hair regeneration. HFSCs represent an excellent paradigm for studying tissue regeneration and somatic stem cell homeostasis. However, these crucial studies are hampered by the lack of a culture system able to stably expand human HFSCs and regulate their fate. Results Here, we use layer-by-layer (LbL) self-assembly with gelatin/alginate to construct a nanoscale biomimetic extracellular matrix (ECM) for an HFSC population. The LbL coating provides ECM and mechanical support for individual cells, which helps to maintain the CD200+α6+ HFSC population to a certain extent. Addition of key signal molecules (FGF-7 and VEGF-A) simulates the minimum essential components of the stem cell microenvironment, thereby effectively and stably expanding HFSCs and maintaining the CD200+α6+ HFSC population. Subsequently, BMP2 loaded to the nanocoated layer, as a slow-release signal molecule, activates BMP signaling to regulate HFSCs’ fate in order to obtain a purified CD200+α6+ HFSC population. Conclusion This system can minimize the microenvironment of HFSCs; thus, stably amplifying HFSCs and revealing their plasticity. Our study thus provides a new tool for studies of hair follicle reconstruction and stem cell homeostasis.

Funder

Natural Science Foundation of Guangdong Province

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3