Aluminum-based metal–organic framework nanoparticles as pulmonary vaccine adjuvants

Author:

Stillman Zachary S.,Decker Gerald E.,Dworzak Michael R.,Bloch Eric D.,Fromen Catherine A.

Abstract

AbstractThe adoption of pulmonary vaccines to advantageously provide superior local mucosal protection against aerosolized pathogens has been faced with numerous logistical and practical challenges. One of these persistent challenges is the lack of effective vaccine adjuvants that could be well tolerated through the inhaled route of administration. Despite its widespread use as a vaccine adjuvant, aluminum salts (alum) are not well tolerated in the lung. To address this issue, we evaluated the use of porous aluminum (Al)-based metal–organic framework (MOF) nanoparticles (NPs) as inhalable adjuvants. We evaluate a suite of Al-based MOF NPs alongside alum including DUT-4, DUT-5, MIL-53 (Al), and MIL-101-NH2 (Al). As synthesized, MOF NPs ranged between ~ 200 nm and 1 µm in diameter, with the larger diameter MOFs matching those of commercial alum. In vitro examination of co-stimulatory markers revealed that the Al-based MOF NPs activated antigen presenting cells more effectively than alum. Similar results were found during in vivo immunizations utilizing ovalbumin (OVA) as a model antigen, resulting in robust mucosal humoral responses for all Al MOFs tested. In particular, DUT-5 was able to elicit mucosal OVA-specific IgA antibodies that were significantly higher than the other MOFs or alum dosed at the same NP mass. DUT-5 also was uniquely able to generate detectable IgG2a titers, indicative of a cellular immune response and also had superior performance relative to alum at equivalent Al dosed in a reduced dosage vaccination study. All MOF NPs tested were generally well-tolerated in the lung, with only acute levels of cellular infiltrates detected and no Al accumulation; Al content was largely cleared from the lung and other organs at 28 days despite the two-dose regime. Furthermore, all MOF NPs exhibited mass median aerodynamic diameters (MMADs) of ~ 1.5–2.5 µm when dispersed from a generic dry powder inhaler, ideal for efficient lung deposition. While further work is needed, these results demonstrate the great potential for use of Al-based MOFs for pulmonary vaccination as novel inhalable adjuvants. Graphical Abstract

Funder

National Institute of General Medical Sciences

University of Delaware Materials Research Science and Engineering Center

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3