Bioinspired polydopamine nanoparticles as efficient antioxidative and anti-inflammatory enhancers against UV-induced skin damage

Author:

Zhang Jia,Zhou Yuqi,Jiang Zhaoting,He Chenhui,Wang Bo,Wang Qi,Wang Zeqian,Wu Tong,Chen Xiaoqi,Deng Ziwei,Li Chunying,Jian Zhe

Abstract

AbstractExcessive and prolonged ultraviolet radiation (UVR) exposure causes photodamage, photoaging, and photocarcinogenesis in human skin. Therefore, safe and effective sun protection is one of the most fundamental requirements. Living organisms tend to evolve various natural photoprotective mechanisms to avoid photodamage. Among them, melanin is the main functional component of the photoprotective system of human skin. Polydopamine (PDA) is synthesized as a mimic of natural melanin, however, its photoprotective efficiency and mechanism in protecting against skin damage and photoaging remain unclear. In this study, the novel sunscreen products based on melanin-inspired PDA nanoparticles (NPs) are rationally designed and prepared. We validate that PDA NPs sunscreen exhibits superior effects on photoprotection, which is achieved by the obstruction of epidermal hyperplasia, protection of the skin barrier, and resolution of inflammation. In addition, we find that PDA NPs are efficiently intake by keratinocytes, exhibiting robust ROS scavenging and DNA protection ability with minimal cytotoxicity. Intriguingly, PDA sunscreen has an influence on maintaining homeostasis of the dermis, displaying an anti-photoaging property. Taken together, the biocompatibility and full photoprotective properties of PDA sunscreen display superior performance to those of commercial sunscreen. This work provides new insights into the development of a melanin-mimicking material for sunscreens.

Funder

Key projects of the Shaanxi Natural Science Basic Research Program

Flying Plan of Lingyun Project of Air Force Military Medical University

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3