An optimized exosome production strategy for enhanced yield while without sacrificing cargo loading efficiency

Author:

Zhang Rongxin,Bu Te,Cao Ruidan,Li Zhelong,Wang Chen,Huang Bing,Wei Mengying,Yuan Lijun,Yang Guodong

Abstract

Abstract Background Exosome mediated mRNA delivery is a promising strategy for the treatment of multiple diseases. However, the low yield of exosomes is a bottleneck for clinical translation. In this study, we boosted exosome production via simultaneously reducing the expression of genes inhibiting exosome biogenesis and supplementing the culture medium with red cell membrane components. Results Among the candidate genes, knocking down of Rab4 was identified to have the highest efficacy in promoting exosome biogenesis while without any obvious cytotoxicity. Additionally, supplementing red cell membrane particles (RCMPs) in the culture medium further promoted exosome production. Combination of Rab4 knockdown and RCMP supplement increased exosome yield up to 14-fold. As a proof-of-concept study, low-density lipoprotein receptor (Ldlr) mRNA was forced expressed in the exosome donor cells and passively encapsulated into the exosomes during biogenesis with this strategy. Though exosome production per cell increased, the booster strategy didn’t alter the loading efficiency of therapeutic Ldlr mRNA per exosome. Consistently, the therapeutic exosomes derived by the strategy alleviated liver steatosis and atherosclerosis in Ldlr−/− mice, similar as the exosomes produced by routine methods. Conclusions Together, the proposed exosome booster strategy conquers the low yield bottleneck to some extent and would certainly facilitate the clinical translation of exosomes.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3