Biomimetic nanoparticles to enhance the reverse cholesterol transport for selectively inhibiting development into foam cell in atherosclerosis

Author:

Zhu Li,Li Hongjiao,Li Jiyu,Zhong Yuan,Wu Shuai,Yan Meng,Ni Sheng,Zhang Kun,Wang Guixue,Qu Kai,Yang Deqin,Qin Xian,Wu Wei

Abstract

AbstractA disorder of cholesterol homeostasis is one of the main initiating factors in the progression of atherosclerosis (AS). Metabolism and removal of excess cholesterol facilitates the prevention of foam cell formation. However, the failure of treatment with drugs (e.g. methotrexate, MTX) to effectively regulate progression of disease may be related to the limited drug bioavailability and rapid clearance by immune system. Thus, based on the inflammatory lesion “recruitment” properties of macrophages, MTX nanoparticles (MTX NPs) camouflaged with macrophage membranes (MM@MTX NPs) were constructed for the target to AS plaques. MM@MTX NPs exhibited a uniform hydrodynamic size around ~ 360 nm and controlled drug release properties (~ 72% at 12 h). After the macrophage membranes (MM) functionalized “homing” target delivery to AS plaques, MM@MTX NPs improved the solubility of cholesterol by the functionalized β-cyclodextrin (β-CD) component and significantly elevate cholesterol efflux by the loaded MTX mediated the increased expression levels of ABCA1, SR-B1, CYP27A1, resulting in efficiently inhibiting the formation of foam cells. Furthermore, MM@MTX NPs could significantly reduce the area of plaque, aortic plaque and cholesterol crystals deposition in ApoE−/− mice and exhibited biocompatibility. It is suggested that MM@MTX NPs were a safe and efficient therapeutic platform for AS. Graphical Abstract

Funder

Postdoctoral Research Foundation of China

JinFeng Laboratory of Chongqing

National Natural Science Foundation of China

Fundamental Research Funds for the National Key R&D Project

Natural Science Foundation of Chongqing

Fundamental Research Funds for Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3