Assembling Au8 clusters on surfaces of bifunctional nanoimmunomodulators for synergistically enhanced low dose radiotherapy of metastatic tumor

Author:

Zhang Rui,Jia Mengchao,Lv Hongying,Li Mengxuan,Ding Guanwen,Cheng Ge,Li Juan

Abstract

Abstract Background Radiotherapy is one of the mainstays of cancer therapy and has been used for treating 65–75% of patients with solid tumors. However, radiotherapy of tumors has two limitations: high-dose X-rays damage adjacent normal tissue and tumor metastases cannot be prevented. Results Therefore, to overcome the two limitations of radiotherapy, a multifunctional core–shell R837/BMS@Au8 nanoparticles as a novel radiosensitizer were fabricated by assembling Au8NCs on the surface of a bifunctional nanoimmunomodulator R837/BMS nanocore using nanoprecipitation followed by electrostatic assembly. Formed R837/BMS@Au8 NP composed of R837, BMS-1, and Au8 clusters. Au8NC can enhance X-ray absorption at the tumor site to reduce X-ray dose and releases a large number of tumor-associated antigens under X-ray irradiation. With the help of immune adjuvant R837, dendritic cells can effectively process and present tumor-associated antigens to activate effector T cells, meanwhile, a small-molecule PD-L1 inhibitor BMS-1 can block PD-1/PD-L1 pathway to reactivate cytotoxic T lymphocyte, resulting in a strong systemic antitumor immune response that is beneficial for limiting tumor metastasis. According to in vivo and in vitro experiments, radioimmunotherapy based on R837/BMS@Au8 nanoparticles can increase calreticulin expression on of cancer cells, reactive oxygen species generation, and DNA breakage and decrease colony formation. The results revealed that distant tumors were 78.2% inhibited depending on radioimmunotherapy of primary tumors. Therefore, the use of a novel radiosensitizer R837/BMS@Au8 NPs realizes low-dose radiotherapy combined with immunotherapy against advanced cancer. Conclusion In conclusion, the multifunctional core–shell R837/BMS@Au8 nanoparticles as a novel radiosensitizer effectively limiting tumor metastasis and decrease X-ray dose to 1 Gy, providing an efective strategy for the construction of nanosystems with radiosensitizing function.

Funder

Jilin University Overseas Doctoral Class A Talent Start-up Project

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3