Biomimetic nanobubbles for triple-negative breast cancer targeted ultrasound molecular imaging

Author:

Jugniot Natacha,Massoud Tarik F.,Dahl Jeremy J.,Paulmurugan Ramasamy

Abstract

AbstractTriple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype with poor prognosis. Although anatomical imaging figures prominently for breast lesion screening, TNBC is often misdiagnosed, thus hindering early medical care. Ultrasound (US) molecular imaging using nanobubbles (NBs) capable of targeting tumor cells holds great promise for improved diagnosis and therapy. However, the lack of conventional biomarkers in TNBC impairs the development of current targeted agents. Here, we exploited the homotypic recognition of cancer cells to synthesize the first NBs based on TNBC cancer cell membrane (i.e., NBCCM) as a targeted diagnostic agent. We developed a microfluidic technology to synthesize NBCCM based on the self-assembly property of cell membranes in aqueous solutions. In vitro, optimal NBCCM had a hydrodynamic diameter of 683 ± 162 nm, showed long-lasting US contrast enhancements and homotypic affinity. In vivo, we demonstrated that NBCCM showed increased extravasation and retention in a TNBC mouse model compared to non-targeted NBs by US molecular imaging. Peak intensities and areas under the curves from time-intensity plots showed a significantly enhanced signal from NBCCM compared to non-targeted NBs (2.1-fold, P = 0.004, and, 3.6-fold, P = 0.0009, respectively). Immunofluorescence analysis further validated the presence of NBCCM in the tumor microenvironment. Circumventing the challenge for universal cancer biomarker identification, our approach could enable TNBC targeting regardless of tumor tissue heterogeneity, thus improving diagnosis and potentially gene/drug targeted delivery. Ultimately, our approach could be used to image many cancer types using biomimetic NBs prepared from their respective cancer cell membranes.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3