Exosomal miR-184 in the aqueous humor of patients with central serous chorioretinopathy: a potential diagnostic and prognostic biomarker

Author:

Yang Jee Myung,Kim Soo Jin,Park Seongyeol,Son Wonyung,Kim Anna,Lee Junyeop

Abstract

Abstract Background Central serous chorioretinopathy (CSC) is the fourth most prevalent retinal disease leading to age-related macular degeneration (AMD) and retinal atrophy. However, CSC's pathogenesis and therapeutic target need to be better understood. Results We investigated exosomal microRNA in the aqueous humor of CSC patients using next-generation sequencing (NGS) to identify potential biomarkers associated with CSC pathogenesis. Bioinformatic evaluations and NGS were performed on exosomal miRNAs obtained from AH samples of 62 eyes (42 CSC and 20 controls). For subgroup analysis, patients were divided into treatment responders (CSC-R, 17 eyes) and non-responders (CSC-NR, 25 eyes). To validate the functions of miRNA in CECs, primary cultured-human choroidal endothelial cells (hCEC) of the donor eyes were utilized for in vitro assays. NGS detected 376 miRNAs. Our results showed that patients with CSC had 12 significantly upregulated and 17 downregulated miRNAs compared to controls. miR-184 was significantly upregulated in CSC-R and CSC-NR patients compared to controls and higher in CSC-NR than CSC-R. In vitro assays using primary cultured-human choroidal endothelial cells (hCEC) demonstrated that miR-184 suppressed the proliferation and migration of hCECs. STC2 was identified as a strong candidate for the posttranscriptional down-regulated target gene of miR-184. Conclusion Our findings suggest that exosomal miR-184 may serve as a biomarker reflecting the angiostatic capacity of CEC in patients with CSC.

Funder

National Research Foundation of Korea

Asan Institute for Life Sciences, Asan Medical Center

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3