Inhibiting MAPK14 showed anti-prolactinoma effect

Author:

Ding Qiao-yan,Zhang Yu,Ma Li,Chen Yong-gang,Wu Jin-hu,Zhang Hong-feng,Wang Xiong

Abstract

Abstract Background The specific underlying pathogenesis of prolactinoma has not been clarified yet, to the best of our knowledge. p38 mitogen-activated protein kinase (MAPK) signaling including p38α MAPK (MAPK14), p38β (MAPK11), p38γ (MAPK12) and p38δ (MAPK13) is associated with the development and progression of several types of cancer. Methods Immunofluorescence analysis was performed on the prolactin (PRL) and MAPK14 expressions of pituitary gland in C57BL/6 mice and human prolactinoma specimen. In the present study, the role of MAPK14 in prolactinoma was determined using estradiol-induced mice and dopamine D2 receptor knockout (DRD2−/−) mice models in C57BL/6 wild-type (WT), MAPK14−/ and DRD2−/−MAPK14+/− mice. GH3 cells were transfected with different sets of MAPK14 small interfering RNA, which to study MAPK14 and PRL expression in GH3 cells. Results Immunofluorescence analysis showed that PRL and MAPK14 expression were colocalized and increased in the pituitary gland of mice and human prolactinoma specimen compared with the control specimen. It was shown that PRL and MAPK14 expression was colocalized and increased significantly in the pituitary gland of estradiol-injected prolactinoma mice compared with the control mice. Knockout of MAPK14 significantly inhibited tumor overgrowth, and PRL expression was decreased in estradiol-induced mice. Furthermore, MAPK14 knockout of DRD2−/−MAPK14+/− mice significantly reduced the overgrowth of pituitary gland and PRL production and secretion compared with DRD2−/− mice. MAPK14 knockout using siRNA inhibited PRL production in GH3 cells. Conclusion These results suggest that MAPK14 serves a promoting role in the formation of prolactinoma, and highlights the potential of MAPK14 as a potential therapeutic target in the treatment of prolactinoma.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3