PIWIL2 restrains the progression of thyroid cancer via interaction with miR-146a-3p

Author:

Lu Xiaoxiao,Zhu Qingyun,Du Hong,Gu Mingjun,Li Xiangqi

Abstract

Abstract Objective The classical role of PIWIL2 is to regulate reproduction by binding to piRNA, but its tumor-related function has received increasing attention in recent years. This study aims to explore its role in the progression of thyroid cancer (TC). Methods First, we measured and analyzed the levels of PIWIL2 and miR-146a-3p in TC tissue and adjacent tissues as well as several TC cell lines. We demonstrated the clinical significance of PIWIL2 and miR-146a-3p through the survival rate. Based on these results, we selected TPC-1 and KTC-3 cell lines for our cell experiments. We treated these cell lines with PIWIL2 lentivirus, PIWIL2 siRNA, miR-146a-3p mimic, or miR-146a-3p inhibitor and measured cell proliferation, cell cycle, apoptosis, migration, and invasion. We used PCR and Western blot to quantify the mRNA and protein levels of PIWIL2, while we used luciferase reporter assay and RNA binding protein immunoprecipitation to explore the relationship between miR-146a-3p and PIWIL2. Finally, we developed a xenograft tumor model to confirm the effects of the miR-146a-3p/PIWIL2 axis on TC progression in vivo. Results We identified that PIWIL2 and miR-146a-3p exhibit opposite expression alterations in TC tissues and that PIWIL2 serves as a ‘sponge’ by adsorbing miR-146a-3p. Up-regulating PIWIL2 decelerated the proliferation, metastasis, and cell cycle progression of TPC-1 and KTC-3 cells, but accelerated the apoptosis of TC cells, while miR-146a-3p exhibited opposite effects. Finally, overexpressing PIWIL2 restrained the progression of TC in nude mice, which can be reversed by increasing miR-146a-3p expression. Inhibiting PIWIL2, on the other hand, promoted the progression of TC in vivo, which can be reversed by inhibiting miR-146a-3p. Conclusion PIWIL2 may inhibit the progression of TC by sponging miR-146a-3p, providing new insights into the early treatment, recrudescence treatment, and metastasis treatment of TC.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3